000889893 001__ 889893
000889893 005__ 20240712112853.0
000889893 0247_ $$2arXiv$$aarXiv:2101.03381
000889893 0247_ $$2Handle$$a2128/26840
000889893 0247_ $$2altmetric$$aaltmetric:97493244
000889893 037__ $$aFZJ-2021-00501
000889893 1001_ $$0P:(DE-HGF)0$$aVaupel, Yannic$$b0
000889893 245__ $$aOptimal operating policies for organic Rankine cycles for waste heat recovery under transient conditions
000889893 260__ $$c2021
000889893 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1639564394_11312
000889893 3367_ $$2ORCID$$aWORKING_PAPER
000889893 3367_ $$028$$2EndNote$$aElectronic Article
000889893 3367_ $$2DRIVER$$apreprint
000889893 3367_ $$2BibTeX$$aARTICLE
000889893 3367_ $$2DataCite$$aOutput Types/Working Paper
000889893 520__ $$aWaste heat recovery for trucks via organic Rankine cycle is a promising technology to reduce fuel consumption and emissions. As the vehicles are operated in street traffic, the heat source is subject to strong fluctuations. Consequently, such disturbances have to be considered to enable safe and efficient operation. Herein, we find optimal operating policies for several representative scenarios by means of dynamic optimization and discuss the implications on control strategy design. First, we optimize operation of a typical driving cycle with data from a test rig. Results indicate that operating the cycle at minimal superheat is an appropriate operating policy. Second, we consider a scenario where the permissible expander power is temporarily limited, which is realistic in street traffic. In this case, an operating policy with flexible superheat can reduce the losses associated with operation at minimal superheat by up to 53 % in the considered scenario. As the duration of power limitation increases, other constraints might become active which results in part of the exhaust gas being bypassed, hence reduced savings.
000889893 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x0
000889893 588__ $$aDataset connected to arXivarXiv
000889893 7001_ $$0P:(DE-HGF)0$$aHuster, Wolfgang R.$$b1
000889893 7001_ $$0P:(DE-HGF)0$$aMhamdi, Adel$$b2
000889893 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b3$$eCorresponding author$$ufzj
000889893 8564_ $$uhttps://juser.fz-juelich.de/record/889893/files/2101.03381.pdf$$yOpenAccess
000889893 909CO $$ooai:juser.fz-juelich.de:889893$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889893 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000889893 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000889893 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000889893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b3$$kFZJ
000889893 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b3$$kRWTH
000889893 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
000889893 9141_ $$y2021
000889893 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889893 920__ $$lyes
000889893 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000889893 9801_ $$aFullTexts
000889893 980__ $$apreprint
000889893 980__ $$aVDB
000889893 980__ $$aI:(DE-Juel1)IEK-10-20170217
000889893 980__ $$aUNRESTRICTED
000889893 981__ $$aI:(DE-Juel1)ICE-1-20170217