000889901 001__ 889901
000889901 005__ 20240712112905.0
000889901 0247_ $$2doi$$a10.1016/j.jprocont.2021.01.003
000889901 0247_ $$2ISSN$$a0959-1524
000889901 0247_ $$2ISSN$$a1873-2771
000889901 0247_ $$2Handle$$a2128/26849
000889901 0247_ $$2WOS$$aWOS:000631697100001
000889901 037__ $$aFZJ-2021-00509
000889901 082__ $$a004
000889901 1001_ $$0P:(DE-HGF)0$$aVaupel, Yannic$$b0
000889901 245__ $$aNonlinear model predictive control of organic Rankine cycles for automotive waste heat recovery: Is it worth the effort?
000889901 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000889901 3367_ $$2DRIVER$$aarticle
000889901 3367_ $$2DataCite$$aOutput Types/Journal article
000889901 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639564416_13119
000889901 3367_ $$2BibTeX$$aARTICLE
000889901 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889901 3367_ $$00$$2EndNote$$aJournal Article
000889901 520__ $$aUsing organic Rankine cycles (ORC) for waste heat recovery in vehicles promises significant reductions in fuel consumption. Controlling the organic Rankine cycle, however, is difficult due to the highly transient exhaust gas conditions. To tackle this issue, nonlinear model predictive control (NMPC) has been proposed and approximate NMPC solutions have been investigated to reduce computational demand. Herein, we compare (i) an idealized economic NMPC (eNMPC) scheme as a benchmark to (ii) a NMPC enforcing minimal superheat and (iii) a PI controller with dynamic feed-forward term (PI-ff) in a control case study with highly transient disturbances. We show that, for an ORC system with supersonic turbine, the economic control problem can be reduced to a single-input single-output superheat tracking problem combined with a decoupled steady-state real-time optimization (RTO) of turbine operation, assuming an idealized condenser. Our results indicate that the NMPC enforcing minimal superheat provides good control performance with negligible losses in average power compared to the full solution of the economic NMPC problem and that even PI-ff only results in marginal losses in average power compared to the model-based controllers.
000889901 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x0
000889901 588__ $$aDataset connected to CrossRef
000889901 7001_ $$0P:(DE-HGF)0$$aSchulze, Jan C.$$b1
000889901 7001_ $$0P:(DE-HGF)0$$aMhamdi, Adel$$b2
000889901 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b3$$eCorresponding author$$ufzj
000889901 773__ $$0PERI:(DE-600)2000438-2$$a10.1016/j.jprocont.2021.01.003$$gVol. 99, p. 19 - 27$$p19 - 27$$tJournal of process control$$v99$$x0959-1524$$y2021
000889901 8564_ $$uhttps://juser.fz-juelich.de/record/889901/files/JPROCONT-D-20-00206_Rev1.pdf$$yOpenAccess
000889901 909CO $$ooai:juser.fz-juelich.de:889901$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889901 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000889901 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000889901 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000889901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b3$$kFZJ
000889901 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b3$$kRWTH
000889901 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
000889901 9141_ $$y2021
000889901 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000889901 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000889901 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-03
000889901 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-03
000889901 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PROCESS CONTR : 2018$$d2020-09-03
000889901 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000889901 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000889901 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-03
000889901 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889901 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-03
000889901 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000889901 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000889901 920__ $$lyes
000889901 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000889901 9801_ $$aFullTexts
000889901 980__ $$ajournal
000889901 980__ $$aVDB
000889901 980__ $$aI:(DE-Juel1)IEK-10-20170217
000889901 980__ $$aUNRESTRICTED
000889901 981__ $$aI:(DE-Juel1)ICE-1-20170217