001     889901
005     20240712112905.0
024 7 _ |a 10.1016/j.jprocont.2021.01.003
|2 doi
024 7 _ |a 0959-1524
|2 ISSN
024 7 _ |a 1873-2771
|2 ISSN
024 7 _ |a 2128/26849
|2 Handle
024 7 _ |a WOS:000631697100001
|2 WOS
037 _ _ |a FZJ-2021-00509
082 _ _ |a 004
100 1 _ |a Vaupel, Yannic
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Nonlinear model predictive control of organic Rankine cycles for automotive waste heat recovery: Is it worth the effort?
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639564416_13119
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Using organic Rankine cycles (ORC) for waste heat recovery in vehicles promises significant reductions in fuel consumption. Controlling the organic Rankine cycle, however, is difficult due to the highly transient exhaust gas conditions. To tackle this issue, nonlinear model predictive control (NMPC) has been proposed and approximate NMPC solutions have been investigated to reduce computational demand. Herein, we compare (i) an idealized economic NMPC (eNMPC) scheme as a benchmark to (ii) a NMPC enforcing minimal superheat and (iii) a PI controller with dynamic feed-forward term (PI-ff) in a control case study with highly transient disturbances. We show that, for an ORC system with supersonic turbine, the economic control problem can be reduced to a single-input single-output superheat tracking problem combined with a decoupled steady-state real-time optimization (RTO) of turbine operation, assuming an idealized condenser. Our results indicate that the NMPC enforcing minimal superheat provides good control performance with negligible losses in average power compared to the full solution of the economic NMPC problem and that even PI-ff only results in marginal losses in average power compared to the model-based controllers.
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schulze, Jan C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mhamdi, Adel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.jprocont.2021.01.003
|g Vol. 99, p. 19 - 27
|0 PERI:(DE-600)2000438-2
|p 19 - 27
|t Journal of process control
|v 99
|y 2021
|x 0959-1524
856 4 _ |u https://juser.fz-juelich.de/record/889901/files/JPROCONT-D-20-00206_Rev1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889901
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PROCESS CONTR : 2018
|d 2020-09-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21