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Abstract

Using organic Rankine cycles (ORC) for waste heat recovery in vehicles promises

significant reductions in fuel consumption. Controlling the organic Rankine cy-

cle, however, is difficult due to the highly transient exhaust gas conditions. To

tackle this issue, nonlinear model predictive control (NMPC) has been proposed

and approximate NMPC solutions have been investigated to reduce computa-

tional demand. Herein, we compare (i) an idealized economic NMPC (eNMPC)

scheme as a benchmark to (ii) a NMPC enforcing minimal superheat and (iii) a

PI controller with dynamic feed-forward term (PI-ff) in a control case study with

highly transient disturbances. We show that, for an ORC system with super-

sonic turbine, the economic control problem can be reduced to a single-input

single-output superheat tracking problem combined with a decoupled steady-

state real-time optimization (RTO) of turbine operation, assuming an idealized

condenser. Our results indicate that the NMPC enforcing minimal superheat

provides good control performance with negligible losses in average power com-

pared to the full solution of the economic NMPC problem and that even PI-ff

only results in marginal losses in average power compared to the model-based

controllers.
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1. Introduction

In order to reduce fuel consumption of vehicles, waste heat recovery (WHR)

is considered a promising approach [1, 2]. Among the available technologies for

WHR, employing a bottoming organic Rankine cycle (ORC) has been widely in-

vestigated. The technology has been primarily proposed for heavy-duty vehicles

as economic feasibility appears achievable [3], though publications for passenger

vehicles exist [4–7]. Among the potential heat sources, the exhaust gas and ex-

haust gas recirculation are typically preferred over the coolant as the associated

fluid streams exhibit higher exergy flow rates [8].

ORC operation in vehicles results in challenges, which are not encountered in

traditional fields of ORC application. Constraints regarding economics and

available space mandate that the system has to be cheap, lightweight and rela-

tively small. Furthermore, the control system has to operate the ORC system

safely and efficiently under extreme heat source fluctuations with limited com-

putational power available. The former point is addressed in a wide range of

publications considering cycle optimization [9, 10], working fluid selection [11],

working fluid design [12, 13] and expander optimization. The reader is referred

to [14] for a recent review.

Control of ORC systems for vehicles is addressed in many publications. The

proposed methods range from classical PID-type controllers [15] including feed-

forward term [16, 17], linear model predictive control (LMPC) with single

[18, 19] or multiple models [20, 21], dynamic programming [22], to nonlinear

model predictive control (NMPC) with regulatory objective [23] and economic

NMPC (eNMPC) [24, 25]. NMPC is associated with high control quality, but

also with high computational cost, making on-board implementation question-
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able. In eNMPC, a nonlinear model predictive control problem with an objective

function motivated by process economics is solved [26]. Fast NMPC methods

that approximate the NMPC solution have been applied to WHR in vehicles

and real-time capability was reported on desktop computers [27, 28]. For an

overview of this class of control algorithms we refer to [29]. Furthermore, ANN-

based NMPC [30] and explicit NMPC [31] have been proposed to address the

high computational demand of NMPC.

Recent works also compare advanced model-based controllers to PI controllers

[27, 28, 32]. In [27], a real-time iteration (RTI) scheme [33] is implemented with

ACADO [34] for a parallel heat exchanger WHR system. The NMPC scheme is

found to result in a significantly higher net power production (about 9 %) than

PID-based control, which is predominantly due to the latter failing to meet the

superheat constraint resulting in the turbine being bypassed. In [28], a RTI

scheme with economic objective including moving horizon estimation is imple-

mented for a single heat exchanger system and compared to a PID controller

and a LQR. The authors find that the eNMPC scheme only improves power

production by about 2 % compared to the other controllers. In [32], three dif-

ferent advanced control strategies are compared for a system with a single heat

exchanger. While NMPC with tracking objective and dynamic programming

with economic objective yield similar net power production, a PID-based strat-

egy results in significantly lower net power production. This is predominantly

due to intermediate bypassing of the turbine as the superheat constraint is not

satisfied at all times.

While many control-related contributions focusing on the development and per-

formance evaluation of particular controllers are available, comparatively few

publications address what constitutes optimal operation/control for the consid-

ered ORC system. Answering this question requires considerations on (i) what

are the control objectives and (ii) which degrees of freedom should be employed

to control the system. These points are addressed to some extent in [35, 36] and
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[37]. We recently presented a manuscript that uses dynamic optimization to find

optimal operating policies for characteristic operating scenarios [38]. There, we

compared operation at minimal superheat to optimal economic operation with

flexible superheat. For a scenario, where no operational constraints besides

minimal superheat become active, we found that economically optimal system

operation included several peaks in superheat similar to those in the fuzzy logic

strategy in [37]. However, as the additional produced power is small, we pro-

posed to operate at minimal superheat. Further, we found, in line with [35],

that working fluid (WF) mass flow should be the main actuator and the evap-

orator bypass should only be used to satisfy operational constraints. This can

for example be necessary when, temporarily, only a limited amount of recovered

power can be utilized. In this situation, we found that operating at increased

superheat can improve overall power production. Our findings indicate that it

is crucial to consider the system dynamics for optimal operation and stress the

need for energy management approaches, as e.g., [39].

In this manuscript, we transfer our findings to a control strategy. We implement

a NMPC scheme based on single shooting which solves each instance of the op-

timal control problem (OCP) to convergence. Using this scheme, we develop (i)

a controller with economic objective function and (ii) a controller with regula-

tory objective function. For comparison, we implement (iii) a PI controller with

feed-forward term. Subsequently, we test the controllers in-silico with an ORC

model from our previous work [38, 40] on a driving cycle with highly transient

disturbances. The aforementioned contributions that include comparisons be-

tween advanced model-based controllers and PI controllers [27, 28, 32] focus on

developing real-time capable advanced control strategies. In contrast, our focus

is on discussing different approaches to the control problem and assessing the

limit of the economic benefit of NMPC over decentralized control strategies un-

der idealized assumptions. We show that (i) the multi-variable control problem

can be addressed by a decentralized control structure without significant loss

of performance assuming an ideal condenser and (ii) employing a PI controller
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with feed-forward term leads only to small losses in produced power compared

to NMPC.

In the case study, we assume that the power produced can be fully utilized

at all times. Note that irrespective of whether the expansion machine is me-

chanically coupled to the powertrain or connected to a generator, situations may

occur, where the amount of power that can be utilized is limited. Such a situ-

ation would require an energy management system that switches to a different

operating regime (as outlined in [38]) and is not considered herein.

The remainder of this manuscript is structured as follows. We introduce our

modeling assumptions and the process model in Sec. 2 followed by a presen-

tation of the examined control strategies in Sec. 3. We present a case study

based on the World Harmonized Transient Cycle (WHTC) in Sec. 4 and present

conclusions in Sec. 5.

2. Investigated system

We consider an ORC process for waste heat recovery in a heavy-duty diesel

truck (Fig. 1). The liquid working fluid (WF) ethanol is pressurized in a pump

4 Ñ 1 , evaporated at high pressure in the evaporator 1 Ñ 2 , expanded in the

turbine 2 Ñ 3 and liquefied in the condenser 3 Ñ 4 . The heat source is the

tailpipe exhaust gas with mass flow rate 9mexh and inlet temperature Texh,in.

We only consider the high-pressure side and assume an ideal condenser with

constant WF outlet conditions as is common practice in control literature [35].

The ORC model is taken from our previous work [40] with the simplifications in-

troduced in [38]. The turbine is modeled using a quasi-stationary model and the

evaporator is modeled with the moving boundary approach [41]. The available

inputs for manipulating the system are the WF mass flow rate 9mWF,in set by

the pump, the turbine rotational speed nturb and the exhaust gas bypass valve

position xBPV . As the turbine operates at supersonic conditions, nturb does not
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affect the WF outlet mass flow from the evaporator [35]. Thus, it only serves

as degree of freedom to optimize turbine operation [38]. Our findings from [38]

indicate that, for a typical driving cycle, the exhaust gas bypass valve position

can be fixed so that all exhaust gas passes through the evaporator and power

production is maximized. Consequently, we do not consider xBPV as a degree of

freedom (DOF) in this work. The disturbances are 9mexh and Texh,in. We only

consider nominal operation, i.e., the fluid enters the evaporator as subcooled

liquid and exits as superheated vapor. Thus, we do not require a switching

model as developed in [42].

Exhaust

nturb

Working fluid

Texh,in

mexh
xBPV

4

1 2

3

mWF

Idealized condenser

Figure 1: Topology of the examined system (taken from [38]). The WF is indicated by the solid
green line and the exhaust gas by the dashed gray line. The control variables are indicated
by arrows and the disturbances by the circle. The condenser is replaced by the idealized
assumption of operation at ambient pressure and fixed subcooling.

3. Examined control strategies

In this section, we first discuss the control objectives, the DOF considered for

controlling the system and we describe the considered control structures based

on our findings in [38] (Sec. 3.1). Then, we present (i) the eNMPC, (ii) the

NMPC (both in Sec. 3.2) and (iii) PI controller with feed-forward term (PI-ff)

in Sec. 3.3.
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3.1. Considered control structures, objectives and degrees of freedom

The ultimate objective of a WHR system in a vehicle is to reduce fuel con-

sumption. Assuming that the produced power can always be fully utilized, the

control objective is to maximize produced electric power while achieving safe

operation by manipulating the considered DOF ( 9mWF,in, nturb). For eNMPC,

we can directly formulate the economic objective function accordingly and for

all MPC controllers, we have to determine adequate constraints. Herein, we

refer to control structures, where not all DOF are controlled by one controller

as decentralized control structures. To translate the objective of maximizing

power production into a decentralized control structure, we need to pair con-

trolled variables with the DOF and specify adequate set-points.

A variety of decentralized control structures has been suggested in literature and

distinction has to be drawn between ORC system with volumetric expanders,

where the expander speed influences the WF mass flow rate [43] and supersonic

turbines, where this is not the case [35]. For volumetric expanders, it is pro-

posed to use pump mass flow to control superheat and expander speed to control

evaporating temperature [16]. For turbines, using pump mass flow to control

superheat is a sensible choice [35]. The control structure can be extended by

using the exhaust bypass to additionally control pressure [36]. This additional

control loop could be used by an energy management system to adjust the power

output. In works with MPC, authors either choose a regulatory objective func-

tion that minimizes the deviation from a superheat set-point [27] or a desired

WF temperature [23] (NMPC) or an economic objective function [25, 28] which

maximizes net power production (eNMPC).

We assess the differences between MPC formulations with (i) economic ob-

jective function (eNMPC) and (ii) regulatory objective function (NMPC), with

turbine operation being optimized separately in the latter case. Furthermore,

we implement (iii) a PI controller with feed-forward term that tracks a constant

superheat set-point and uses the same turbine optimization procedure as (ii).
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3.2. Nonlinear model predictive control (NMPC)

NMPC relies on a repeated solution of an OCP on a finite horizon. The

system dynamics are explicitly considered through a model and constraints can

be imposed on state and input trajectories. Feedback is introduced by initial-

izing the dynamic problem with the current system state, implementing only

part of the solution and re-solving the problem to account for disturbances and

plant-model mismatch. We solve the following OCP

min
u,s

ż tOCP
f

tOCP
0

L px ptq ,y ptq ,u ptqq ` ρTsup
s ptq dt (1)

s. t. 9x ptq “ f px ptq ,y ptq ,u ptq ,d ptqq @t P
“

tOCP
0 , tOCP

f

‰

(2)

0 “ g px ptq ,y ptq ,u ptq ,d ptqq @t P
“

tOCP
0 , tOCP

f

‰

(3)

x
`

tOCP
0

˘

“ x0 (4)

h px ptq ,y ptq ,u ptq ,d ptqq ď 0 @t P
“

tOCP
0 , tOCP

f

‰

(5)

umin ď u ptq ď umax @t P
“

tOCP
0 , tOCP

f

‰

(6)

∆Tmin
sup ´∆Tsup ptq ´ s ptq ď 0 @t P

“

tOCP
0 , tOCP

f

‰

(7)

0 ď s ptq @t P
“

tOCP
0 , tOCP

f

‰

(8)

on a horizon from initial time tOCP
0 to final time tOCP

f . The objective func-

tion (1) is of Lagrange-type with running cost function L. The running cost

functions for eNMPC and NMPC are presented in Sec. 3.2.1 and Sec. 3.2.2,

respectively. The differential and algebraic equations are described by vector-

valued functions f and g, where x are the differential states, y are the algebraic

variables, u are the controls and d are the disturbances. The inequality path

constraints are described by the vector-valued function h. For WF superheat,

we employ a soft constraint (7) by introducing a non-negative slack variable s

and adding a L1 penalty, weighted by ρTsup
, in the objective. In this work, the

path constraints are enforced at the control grid points. The DOF are box-

constrained in (6). The horizon is divided into NP control intervals of length

∆tC with tOCP
f “ tOCP

0 `NP ∆tC . The optimizer can change the DOF for the
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first NC intervals after which they are held constant. The DOF are discretized

as continuous piece-wise linear functions in open-loop optimization. Note that

this does allow for discontinuities of the controlled variables in closed loop. Af-

ter a solution is found, the control signal is sent to the process and the problem

is re-solved after one sampling interval ∆tS with tOCP
0 and tOCP

f shifted by ∆tS .

We solve the optimal control problems with the open-source tool DyOS [44]

using single shooting and warm-start the algorithm with the optimal solution

from the previous time step. The integrator is NIXE [45] and the optimizer is

SNOPT [46]. Since we aim to show that similar control performance as with

NMPC can be achieved using simpler methods, we use full state feedback for

specifying the initial state x0 in (4), as it provides an upper bound on NMPC

performance. The application of state estimation to an ORC system is shown

in [27] with an unscented Kalman filter, in [32] with an extended Kalman filter

and in [28] with moving horizon estimation. We determine the slack penalty

weights based on the Lagrange multipliers of the hard constrained problem [47].

3.2.1. Economic NMPC

Assuming that the power produced by the turbine can be fully utilized,

optimal economic operation is equivalent to maximizing net power output. Thus

we set L ptq :“ ´pPturb ptq ´ Ppump ptqq in (1) for eNMPC. The controller adjusts

9mWF,in and nturb simultaneously. A schematic control structure is provided in

Fig. 2.

3.2.2. Standard NMPC

In order to obtain good economic performance from NMPC, we have to

choose a suitable controlled variable. Following ideas from self-optimizing con-

trol [48], we use the NMPC to force the process to operate at an active con-

straint. We design the NMPC to enforce minimal superheat, i.e., we set L ptq :“
`

∆Tsup ptq ´∆Tmin
sup

˘2
in (1) as it is typically the active constraint in economi-

cally optimal operation [38]. Controlling the superheat constraint is convenient,
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eNMPC

x (t)

d(t)

_mWF (t)

nturb (t)

Figure 2: Control structure for eNMPC. Dotted lines indicate measurement and control sig-
nals.

as the set-point is independent of the operating conditions as opposed to, e.g.,

tracking an optimal pressure trajectory, but still leads to inherently optimal

operation. For this objective, NMPC uses only 9mWF,in as DOF.

Since the turbine rotational speed does not affect the WF conditions at the

evaporator outlet, the objective function does not exhibit a sensitivity with

respect to nturb. Consequently, we determine nturb in an online steady-state

optimization, solved at each sampling instance of the NMPC, using fmincon in

Matlab to optimize turbine performance. Although, the problem is non-convex,

we use a local solver to maintain comparability to eNMPC where also a local

solver is used. Thereby, we reduce the control problem to a single-output prob-

lem in contrast to many publications in literature where two quantities out of

TWF,out, ∆Tsup and p are controlled. Splitting the two optimizations is possible

as the turbine rotational speed only serves to optimize turbine operation [35],

which is typical for turbine expansion, but cannot be generalized to any expan-

sion machine. A schematic representation of the control structure is provided

in Fig. 3.

3.2.3. Operating constraints

In the considered case study, the pressure p˚, the WF evaporator outlet

temperature T˚WF,evap,out and the evaporator superheat ∆Tsup are path con-

strained. Throughout this manuscript, the asterisk used as a superscript indi-
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NMPC

x (t)

d(t)
_mWF (t)

RTO

p (t)

hout (t)

nturb (t)

Figure 3: Control structure for NMPC. Dotted lines indicate measurement and control signals.

cates quantities that were scaled due to confidentiality reasons. Consequently,

these quantities are dimensionless. The lower bound on p˚ reflects the minimal

pressure ratio of the turbine. Since we assume condenser operation at ambient

pressure, we can directly express this as a function of the high pressure. The

upper bound on p˚ is a safety constraint, the upper bound on T˚WF,evap,out pre-

vents WF degradation and the lower bound on ∆Tsup prevents damage to the

turbine by droplet formation. We formulate the path constraint for ∆Tsup as a

soft constraint and the constraints for T˚WF,evap,out and p˚ as hard constraints.

We implement the soft constraint since, in contrast to the dynamic optimiza-

tion case study in [38], no prediction of the disturbances is available in this

work. We expect that, as a consequence, it will not be possible to satisfy the

constraint at all times. The lower and upper bounds for the path constraints

and the input constraints are listed in Tab. 1. Our choice of the lower bound

Path constraints DOF
Variable Unit LB UB Variable Unit LB UB

∆Tsup K 20 - 9m˚WF,in - 0.0073 0.0363

T˚WF,evap,out - - 0.8719 n˚turb - 0.82 1.09

p˚ - 0.3 1.5

Table 1: Bounds of path constraints and DOF.

of ∆Tsup is more conservative than in our previous publication [38], due to the

unknown exhaust gas conditions in a control setting. The rationale is to provide

additional back-off so that the controllers are able to maintain superheat above

the limit of 10 K defined in [38]. The lower and upper bounds on 9m˚WF,in and
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n˚turb represent the limits in which the model was validated [40].

3.3. PI with feed-forward term (PI-ff)

We use a PI controller with feed-forward term to track a superheat set-point

using the WF mass flow as DOF

9mWF,in ptq “ KP ¨ e ptq `KI

ż t

t0

e ptqdt` 9mWF,ff ptq , (9)

where e ptq “ ∆T set
sup ´ ∆Tsup ptq is the control error, t0 indicates the initial

time of the simulation and 9mWF,ff is the feed-forward term. Since we want the

feed-forward term to account for the dynamic response of the system, it tracks

the optimal steady-state input 9mopt
WF,ss according to the following differential

equation

9mWF,ff ptq ` τff
d 9mWF,ff

dt
“ 9mopt

WF,ss ` τz
d 9mopt

WF,ss

dt
, (10)

where τff and τz are time constants, which can be tuned to obtain a suitable

dynamic behavior of the feed-forward term. Accordingly, in offset-free steady-

state operation the PI-ff control action is 9mWF,in “ 9mopt
WF,ss. Note that also

the rate of change of the disturbances is considered on the right hand side of

(10). This feed-forward policy is in accordance with [32], where the exhaust gas

temperature rate of change was found to be an important input in the dynamic

programming strategy.

We provide the optimal steady-state input as a map 9mopt
WF,ss “ fmap p 9mexh, Texh,inq

which we determine by solving steady-state optimizations with varying heat

source conditions offline and fitting the correlation with a polynomial cubic in

9mexh and linear in Texh,in (Fig. 4). Similar to NMPC, PI-ff controls the WF

mass flow rate only. We determine nturb in a separate online steady-state op-

timization to obtain optimal turbine operation. A schematic representation of

the PI-ff control structure is provided in Fig. 5.
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data

Figure 4: Polynomial fit of optimal steady-state WF flowrate as function of disturbances. The
data points were obtained by steady-state optimization.

∆Tsup (t)

d(t)
_mWF (t)

RTO

p (t)

hout (t)

nturb (t)
ff

PI
+

Figure 5: Control structure for PI-ff. Dotted lines indicate measurement and control signals.

4. Case study

4.1. Exhaust gas data

In this case study, we consider exhaust gas data representative of a driving

cycle (Fig. 6). It was recorded on a test rig, contains parts of the World Har-

monized Transient Cycle and was used in [40] for model validation and in [38]

as a dynamic optimization case study. The disturbance values and their time

derivatives are measured at every controller sampling instant but no prediction

of the disturbances is available. The same exhaust gas mass flow and tempera-
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(a) Exhaust gas mass flow
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(b) Exhaust gas temperature

Figure 6: Exhaust gas data for the case study.

ture data is used with all three controllers. We assume no feedback delay and

no plant-model mismatch, i.e., we use the presented ORC system model for

the controller and as a plant surrogate, to obtain an upper bound on NMPC

performance.

4.2. Tuning of the controllers

Tuning parameters for the controllers are presented in Tab. 2. For NMPC,

Parameter Value

PI-ff KP ´8.64ˆ 10´4 kg K´1 s´1

KI 1.65ˆ 10´6 kg K´1 s´2

τff 12.0 s
τz 1.35 s

∆T set
sup 20 K

NMPC economic tracking

NP 5 5
NC 5 5
∆tC 8 s 8 s
∆tS 1 s 1 s
ρTsup 8 kW K´1 75 K
∆T set

sup - 20 K

Table 2: Parameters for NMPC and PI-ff controller used in the case study.

we determined NP and ∆tC by implementing various combinations and choosing

the parameters that gave a feasible solution at the smallest computational cost
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(i.e., small NP at given ∆tC). We set NP “ NC as is commonly done in

nonlinear model predictive control [49].

We tuned PI-ff using dynamic optimization with the objective of minimizing

the squared deviation from the superheat set-point and the same exhaust gas

data as in the test cycle. To validate the control law, we used data from another

cycle and found PI-ff to work well. We choose ∆T set
sup “ 20 K in accordance with

the lower bound specified in Sec. 3.2.3.

4.3. Simulation results

The results for eNMPC, NMPC and the PI-ff are presented in Fig. 7. As

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

(a) WF mass flow

0 100 200 300 400 500

0.7

0.8

0.9

1

1.1

1.2

(b) Turbine speed
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(c) Turbine power

0 100 200 300 400 500
0
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40

50

60

70

(d) Superheat

Figure 7: Results for eNMPC, NMPC and PI-ff. Input constraints are indicated by the blue
dotted lines.

can be seen, significant peaks in superheat occur in eNMPC (Fig. 7d). This re-

flects results found in [38] and similar results can be seen in [50], however, since

no disturbance prediction is available, this behavior is surprising. Apparently,

the advantages of temporarily operating at increased superheat observed in [38]
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can also be leveraged without knowledge of future disturbances. Every new

measurement of the disturbance is a step change for the optimizer compared

to the previous instant. When we researched the phenomenon for our previous

publication [38], we found that superheat peaks are present in the optimal solu-

tion for step experiments when the steps in 9mexh are of sufficient duration. In

agreement with this observation, the peaks in superheat occur from t « 200 s

on, where the profile for 9mexh is smoother than in earlier periods.

PI-ff is able to track the superheat set-point well and maintains the system

above a superheat threshold of ∆Tsup “ 10 K. The performance is mostly

comparable to NMPC which is also able to track the superheat set-point with

a maximum deviation of less than 10 K. Since, all controllers stay above this

threshold, we do not consider bypassing the turbine herein. However, PI-ff op-

erates below the superheat set-point more often and for more prolonged periods

than NMPC. This is mostly in situations where a fast decrease in 9mWF,in is

required and the PI controller does not act with the same speed as the idealized

model-based controllers (Fig. 7a). In a case where the violation of the superheat

constraints results in the turbine being bypassed, these periods would signifi-

cantly decrease power production. Thus, it is important to find good tuning

parameters and to choose sufficient back-off for the superheat set-point. On

the other hand, the PI-ff control profile for 9mWF,in (Fig. 7a) is much smoother

than for the eNMPC and NMPC. Consequently, operation is less straining for

the components and a longer lifetime could be expected.

The separation of the turbine optimization in the tracking NMPC strategy ap-

pears to have no detrimental effect on system performance. In fact, notable

differences in turbine speed for eNMPC and NMPC (Fig. 7b) only occur in con-

cordance with peaks in eNMPC superheat. Before the first peak occurs (shortly

before 200 s), there is no visible difference in turbine power production for eN-

MPC and NMPC (Fig. 7c).
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We assess the examined strategies by comparing average scaled net power P˚net,av,

presented in Tab. 3.

P˚net,av “

ştf
t0

`

P˚turb ptq ´ P
˚
pump ptq

˘

dt

tOCP
f ´ t0

(11)

From the table, we make two main observations. First, splitting the control

P˚net,av

eNMPC 0.516
NMPC 0.514
PI-ff 0.513

Table 3: Average scaled net power for eNMPC, NMPC and PI-ff.

problem in a superheat set-point tracking task and separate turbine optimization

yields similar power production to eNMPC while reducing the control problem

to a single-input single-output problem. In fact, the losses in power produced are

less than 0.5 %. Second, the decoupled problem can be conveniently addressed

with a PI controller with marginal performance losses compared to much more

complex model-based control. This finding is in agreement with literature where

2 % losses of PI controller compared to eNMPC are reported [28]. The much

higher losses associated with a PI controller in [27] and [32] are mostly due to

intermediate turbine bypassing when the superheat constraint is violated. This

implies that for a PI controller, a set-point with sufficient back-off from the

superheat constraint should be chosen as the resulting losses in produced power

are moderate compared with the losses of temporarily bypassing the turbine.

We found that increasing the superheat set-point by 5 K reduces produced power

by about 1 %. Note that in [27] a double heat exchanger system was examined

which is harder to control.

Using a prediction of the disturbance in NMPC is proposed in [51]. In case

of a perfect disturbance prediction, we find that PI-ff produces roughly 2 % less

power than eNMPC and NMPC. Furthermore, the improved NMPC superheat
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constraint compliance would allow to reduce the superheat set-point, a result

also observed in [51].

Our results imply that NMPC has only small advantages over more traditional

control strategies. Due to the specific system topology, the control problem

effectively reduces to a SISO problem, thus eliminating potential advantages of

a centralized control structure. Furthermore, the economically optimal control

policy can be approximated with small losses by tracking minimal superheat.

Finally, sufficient back-up can compensate for the slightly poorer tracking per-

formance of a PID-type controller and ensure that the turbine is not bypassed

at moderate economic cost.

5. Conclusions and Outlook

Controlling an ORC on board of a vehicle operated in street traffic is a chal-

lenging task. The system has to be operated safely and efficiently under highly

transient heat source conditions. Control updates have to be made at high

frequency and the control algorithm has to be executed on on-board hardware

with limited computational resources.

Based on our findings from dynamic optimization [38], we proposed and as-

sessed several control strategies in this work. We compared the performance

of a nonlinear model predictive control algorithm (NMPC) and a PI controller

with feed-forward term (PI-ff). Furthermore, we discussed how the economic

optimal control problem with two DOF can be recast as a single-input single-

output tracking control problem and an additional steady-state optimization.

We compared the proposed controllers in a case study containing parts of the

WHTC. From the results we deduced two main findings. First, decomposing the

control problem into two simpler subproblems results only in small losses with

respect to power production. This decomposition reduces the optimal control
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problem to a single-input single-output problem which reduces the computa-

tional load for model-based algorithms and allows for convenient use of single PI

controller. Second, losses from using the PI controller with feed-forward term

are small with 0.5 % less energy recovered than with economic NMPC. Even

when we assumed perfect disturbance predictions, this values only increased to

about 2 %.

These results imply that it is unlikely that a vehicle manufacturer would use

NMPC for ORC in a vehicle. It has to be considered that the benefits of NMPC

only apply to the amount of fuel saved which optimistic estimates put in the

range of 5 % so that the additional overall fuel saving resulting from using NMPC

would be in the range of 0.1 %. Our idealized NMPC framework is not real-time

capable. Others have achieved real-time capability using fast-update algorithms

with ACADO [27] and their own RTI implementation [28], albeit on desktop

computers. However, even if real-time capability could be achieved on-board,

it is questionable whether the small gains in power production are sufficient

to outweigh the advantages of PID control, including small development cost

compared to NMPC.

When a decentralized control structure is chosen, designing an overall energy

management system [39] is an important task. This system should consider all

conceivable conditions (e.g., limited cooling capacity) which could affect ORC

operation. In our previous publication [38], we showed that dynamic optimiza-

tion can be a valuable tool to understand optimal system behavior and draw

conclusions on an suitable decentralized control strategies. In this work, we

have not considered a scenario where the amount of power that can be utilized

is temporarily limited. For this, we would require an energy management sys-

tem that first reduces power production through manipulation of WF mass flow

and turbine speed and switches to a mode where the exhaust bypass valve can

be utilized when other constraints (e.g. maximum WF temperature) become

active. In future work, this case and further scenarios should be assessed. An
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interesting extension would be the consideration of the condenser, which to date

has not been adequately addressed in literature. In particular, it would be inter-

esting to assess the effects on the economically optimal operation when a cost for

cooling could be quantified (e.g., additional power consumption of radiator fan).

NMPC in applications with limited computational resources, however, remains

an important focus of research. Further work could try exploit recent advances

in machine learning for NMPC [30, 52] and the combination with fast-update

methods [53].
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Appendix A. Selected model equations

Here, we present a description of selected model equations, taken from [40],

required for understanding the model. For a full description, including param-

eter values resulting from a dynamic parameter estimation, we refer the reader

to [40].

Appendix A.1. Evaporator moving boundary model

For control volumes with single-phase flow, we get the following mass (A.1)

and energy (A.2) balances

A

ˆ

pza ´ zbq
dρ̄

dt
` ρ̄

d pzb ´ zaq

dt

˙

` ρaA
dza
dt
´ ρbA

dzb
dt

“ 9ma ´ 9mb, (A.1)
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A

ˆ

pzb ´ zaq ρ̄
dh̄

dt
` pzb ´ zaq h̄

dρ̄

dt
` ρ̄h̄

d pzb ´ zaq

dt

˙

´A pzb ´ zaq
dp

dt

`ρahaA
dza
dt
´ ρbhbA

dzb
dt

“ 9maha ´ 9mbhb ` bWFαWF pzb ´ zaq
`

Tw ´ T̄
˘

,

(A.2)

where A is the cross-sectional area of the fluid channel and z is the longitudinal

coordinate. ρ, T and 9m are density, temperature and mass flow of the WF,

where the subscripts a and b indicate quantities of the left-hand and right-

hand boundary of the zones and the overline indicates averaged quantities. t

is the time, bWF the width of the fluid channel and αWF is the heat transfer

coefficient from WF to the wall. The last term on the right hand side of (A.2) is

the heat flow from the wall into the WF. As ρ̄ and h̄ are algebraic quantities, we

account for their time dependence by constructing their total differential w.r.t.

the differential quantities (A.3) and (A.4) and inserting them into (A.1) and

(A.2), in order to obtain formulations, where only actual differential quantities

appear in time derivatives.

dρ̄

dt
“
Bρ̄

Bp

dp

dt
`
Bρ̄

Bh̄

dh̄

dt
(A.3)

dh̄

dt
“

1

2

ˆ

dha
dt

`
dhb
dt

˙

(A.4)

For the two-phase zone, the mass (A.5) and energy (A.6) balances are

A
´

`

γ̄ρ2 ` p1´ γ̄q ρ1
˘ d pzb ´ zaq

dt
` pzb ´ zaq

´dγ̄

dt

`

ρ2 ´ ρ1
˘

`γ̄
Bρ2

Bp

dp

dt
` p1´ γ̄q

Bρ1

Bp

dp

dt

¯¯

` ρaA
dza
dt
´ ρbA

dzb
dt

“ 9ma ´ 9mb, (A.5)

21



A
´d pzb ´ zaq

dt

`

γ̄ρ2h2 ` p1´ γ̄q ρ1h1
˘

` pzb ´ zaq
´dγ̄

dt

`

ρ2h2 ´ ρ1h1
˘

`γ̄h2
dρ2

dp

dp

dt
` p1´ γ̄qh1

dρ1

dp

dp

dt
` γ̄ρ2

dh2

dp

dp

dt
` p1´ γ̄q ρ1

dh1

dp

dp

dt

¯¯

´A pzb ´ zaq
dp

dt
`Aρaha

dza
dt
´Aρbhb

dzb
dt

“ 9maha ´ 9mbhb ` bWFαWF pzb ´ zaq
`

Tw ´ T̄
˘

, (A.6)

where γ̄ is the average void fraction calculated with (A.7) and the superscripts

1 and 2 indicate quantities at liquid and vapor saturation, respectively. The

time derivative of the average void fraction can be expressed by constructing

the total differential w.r.t. the differential quantities (A.8).

γ̄ “
ρ1

ph0 ´ h2q pρ1 ´ ρ2q
2

"

ph0 ´ h2q ρ
1 ` ρ2

„

h2 ´ h0

`
`

h1 ´ h2
˘

ln

ˆ

ρ2 ph2 ´ h0q

ρ1 ph2 ´ h1q

˙*

(A.7)

dγ̄

dt
“
Bγ̄

Bh0

dh0

dt
`
Bγ̄

Bh2

dh2

dt
`
Bγ̄

Bp

dp

dt
(A.8)

The energy balance for each wall zone (A.9) reads,

Awρwcpw

ˆ

li
dTwi

dt
`
`

Tw,Bi,i´1
´ Twi

˘ dza,i
dt

`
`

Twi
´ Tw,Bi,i`1

˘ dzb,i
dt

˙

“ 9Qexhi ´ bWFαWF,ili
`

Twi ´ T̄i
˘

´ αambpevapli pTwi ´ Tambq , (A.9)

where Aw, ρw and cpw
are the wall cross-sectional area, density and heat ca-

pacity. Twi
is the temperature of the respective wall zone and Tw,Bi,i´1

and

Tw,Bi,i`1
are the wall temperatures at the left- and right-hand boundary of the

zone, which are calculated using a length-weighted average, as suggested in [54].

9Qexhi
is the amount of heat transfered from the exhaust gas to the wall, bWF is

the WF channel width and αi the heat transfer coefficient for the WF in the re-

spective zone. We introduce a term accounting for heat loss from the exchanger

wall to the environment, in which αamb is the heat transfer coefficient, pevap the
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HX perimeter and Tamb the ambient temperature.

By analytical integration of the quasi-stationary energy balance on the exhaust

side from interface i`1 to interface i assuming static one dimensional flow [55],

the temperature at the end of one element can be calculated as in (A.10) and

the heat transfered to the wall as in (A.11). Both the exhaust heat capacity

cp,exhi
and the heat transfer coefficient αexhi

are assumed constant over one

element. 9mexh, Texh and bexh are mass flow, temperature and width of the

exhaust channel.

Texhi
“ Twi

`
`

Texhi`1
´ Twi

˘

exp

ˆ

´
αexhibexh
9mexhcp,exhi

li

˙

, i P r0, 2s (A.10)

9Qexhi “ 9mexhcp,exhi

`

Texhi`1 ´ Texhi

˘

(A.11)

Appendix A.2. Pump and turbine models

We model the pump assuming a fixed isentropic and mechanical efficiency

(ηis,pump, ηmech,pump), according to (A.12). Within the model, we set both

efficiencies to 0.9.

Ppump “
1

ηmech,pump
¨ 9mWF ¨

hout,is ´ hin
ηis,pump

(A.12)

For the turbine, we use (A.13) to calculate the power output Pturb.

Pturb “ ηmech,turb ¨ 9mWF ¨ ηis,turb ¨ phin ´ hout,isq (A.13)

The isentropic efficiency is a function of pressure ratio between high and low

pressure and turbine speed. For this, we choose a polynomial function of third

order with respect to pressure ratio and fifth order with respect to turbine speed.

The mechanical efficiency, in contrast, is a function of turbine speed n (second

order polynomial) and torque M (fifth order polynomial).
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[49] L. Grüne, J. Pannek, Nonlinear Model Predictive Control, Springer Inter-

national Publishing, 2017. doi:10.1007/978-3-319-46024-6.

[50] E. E. Guerrero Merino, Real-time optimization for estimation and control:

Application to waste heat recovery for heavy duty trucks, Ph.D. thesis,

University of Heidelberg (2018).

30

https://doi.org/10.1016/j.energy.2018.12.048
https://doi.org/10.1016/j.energy.2018.12.048
https://doi.org/10.1016/b978-0-08-100510-1.00012-0
https://doi.org/10.1016/b978-0-12-818634-3.50104-1
https://doi.org/10.1016/j.procs.2010.04.033
https://doi.org/10.1137/s0036144504446096
https://doi.org/10.1002/aic.690400706
https://doi.org/10.1007/978-3-319-46024-6


[51] D. Rathod, B. Xu, A. Yebi, A. Vahidi, Z. Filipi, M. Hoffman, A look-ahead

model predictive optimal control strategy of a waste heat recovery-organic

rankine cycle for automotive application, in: SAE Technical Paper Series,

SAE International, 2019. doi:10.4271/2019-01-1130.

[52] S. Lucia, B. Karg, A deep learning-based approach to robust nonlinear

model predictive control, IFAC-PapersOnLine 51 (20) (2018) 511–516. doi:

10.1016/j.ifacol.2018.11.038.

[53] Y. Vaupel, N. C. Hamacher, A. Caspari, A. Mhamdi, I. G. Kevrekidis,

A. Mitsos, Accelerating nonlinear model predictive control through machine

learning, Journal of Process Control 92 (2020) 261–270. doi:10.1016/j.

jprocont.2020.06.012.

[54] W.-J. Zhang, C.-L. Zhang, A generalized moving-boundary model for tran-

sient simulation of dry-expansion evaporators under larger disturbances,

International Journal of Refrigeration 29 (7) (2006) 1119–1127.

[55] T. L. McKinley, A. G. Alleyne, An advanced nonlinear switched heat ex-

changer model for vapor compression cycles using the moving-boundary

method, International Journal of Refrigeration 31 (7) (2008) 1253–1264.

31

https://doi.org/10.4271/2019-01-1130
https://doi.org/10.1016/j.ifacol.2018.11.038
https://doi.org/10.1016/j.ifacol.2018.11.038
https://doi.org/10.1016/j.jprocont.2020.06.012
https://doi.org/10.1016/j.jprocont.2020.06.012

	Introduction
	Investigated system
	Examined control strategies
	Considered control structures, objectives and degrees of freedom
	Nonlinear model predictive control (NMPC)
	Economic NMPC
	Standard NMPC
	Operating constraints

	PI with feed-forward term (PI-ff)

	Case study
	Exhaust gas data
	Tuning of the controllers
	Simulation results

	Conclusions and Outlook
	Selected model equations
	Evaporator moving boundary model
	Pump and turbine models


