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Abstract
Lithium ion batteries have been a central part
of consumer electronics for decades. More re-
cently, they have also become critical compo-
nents in the quickly arising technological fields
of electric mobility and intermittent renewable
energy storage. However, many fundamental
principles and mechanisms are not yet under-
stood to a sufficient extent to fully realize the
potential of the incorporated materials. The
vast majority of concurrent lithium ion batter-
ies make use of graphite anodes. Their working
principle is based on intercalation—the em-
bedding and ordering of (lithium-) ions in the
two-dimensional spaces between the graphene
sheets. This important process—it yields the
upper bound to a battery’s charging speed
and plays a decisive role for its longevity—is
characterized by multiple phase transitions, or-
dered and disordered domains, as well as non-
equilibrium phenomena, and therefore quite
complex. In this work, we provide a simulation
framework for the purpose of better under-
standing lithium intercalated graphite and its
behaviour during use in a battery. In order to
address the large systems sizes and long time
scales required to investigate said effects, we

identify the highly efficient, but semi-empirical
Density Funtional Tight Binding (DFTB) as a
suitable approach and combine particle swarm
optimization (PSO) with the machine learning
(ML) procedure Gaussian Process Regression
(GPR) to obtain the necessary parameters. Us-
ing the resulting parametrization, we are able
to reproduce experimental reference structures
at a level of accuracy which is in no way infe-
rior to much more costly ab initio methods. We
finally present structural properties and diffu-
sion barriers for some exemplary system states.

Introduction
Within the past decade, studies investigat-
ing the consequences of man-made climate
change1–3 have become more specific, the pre-
dicted time frames shorter and the warnings
more urgent. The immediate and radical re-
duction of carbon dioxide emissions by replac-
ing fossil fuel based energy sources with renew-
able ones has been found to be the only rea-
sonable approach to at least limit those conse-
quences.4 While the generation of electric en-
ergy from wind and sun is already quite ad-
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vanced and efficient, its storage and transport
are the main factors holding it back compared
to coal and oil. Currently, two main approaches
are being pursued in order to eliminate these
drawbacks. One aims directly at the synthe-
sis of alternative liquid or gas-phase fuels. The
other intends to improve upon existing battery
technology—especially lithium ion batteries—
enough, to make it a serious contender in terms
of energy sustenance. In this work, we intend to
lay some groundwork for gaining deeper insight
into some of the atomistic mechanisms limit-
ing the (dis-)charging speed and lifetime of the
most common types of lithium ion batteries,
with graphite intercalation anodes.
Ever since graphite was ascertained experimen-
tally and theoretically to be an excellent can-
didate as an anode for Li-ion batteries, numer-
ous attempts were made at fully describing the
working system.5–9 Most of the electrochemi-
cal properties of the anode material itself are
well-known. However, in particular transport
processes during strongly driven operating con-
ditions, like fast charging, are only poorly un-
derstood at a microscopic level. These techno-
logically important macroscopic conditions are
accompanied e.g. by temperature variations,
leading to a capacity fade during ageing, as well
as lithium plating. All of the above limit the
lifetime of the battery.10–12 Against this back-
ground, experiments and theory are pushed
quite far to gain insight into the real processes
occuring during the electrochemical operation.
Depending on the quantities accessible via ex-
periments and theory, two hypotheses are reg-
ularly invoked to explain the findings in the
range of 0 % (graphite) to 100 % (LiC6) state
of charge (SOC): the staging and the domain
model. The lithium intercalation process shows
evidence of multiple phase transitions in the
voltage vs. SOC diagram. The corresponding
system configurations are termed “stages” I, II
and so forth. In the simple staging model, these
correspond directly to the numbers of empty
galleries (spaces between graphene sheets) be-
tween the fully occupied ones (see Figure 1).
In the domain model, these motifs are not as-
sumed to range over meso-/macroscopic dimen-
sions but to form regions of finite lateral ex-

Figure 1: Sketch of Li-intercalated graphite in stage I
to III configurations.13 Violet spheres represent lithium
ions, black lines correspond to graphene sheets. Bottom
right: illustration of the domain model.14 The structure
has the same nominal stoichiometry as the structure in
stage II (top right).

tent. Consequently, it is quite clear that dif-
ferent SOC with the same nominal stoichiome-
try LiCx will not be configurationally homoge-
neous, making Li-intercalated graphite a pro-
foundly non-trivial system to address.
In order to effectively connect to experimental
studies, a theoretical framework for simulating
large-scale and long-duration non-equilibrium
processes in the graphite anode, based on ki-
netic Monte Carlo (kMC)15 simulations is re-
quired. The first step towards this goal is gain-
ing the ability to quickly and accurately calcu-
late diffusion barriers on the fly, which is the
primary motivation of this work. This requires
the ability to reproduce reliably and accurately
the layer distances (ideally of all possible con-
figurations, but predominantly of the dilute,
low-saturation stages) and the forces affecting
the lithium-ions, while the strains within the
graphene layers are of lesser importance.
Large-scale atomistic simulations typically pur-
sue force field approaches16 for those systems
where energetics and kinetics are well described
within the upper end of the SOC range. How-
ever, those approaches are limited when it
comes to the entire range of different SOC,
from extremely diluted stages to fully concen-
trated ones. Recently, a Gaussian Approxi-
mation Potential (GAP) was reported to be
able to describe amorphous carbon well.17 How-
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ever, when the latter was later extended to
model lithium intercalation,18 it became appar-
ent that the insertion of lithium into those host
structures requires a non-trivial description of
the electrostatic interaction. Contrary to most
approaches, including the one presented in this
work, Fujikake et al. did not treat the full Li-
C system, but attempted to model the energy
and force differences arising from lithium inter-
calation separately, and then added them to
the carbon GAP. More specifically, their ma-
chine learning (ML) process is based on fit-
ting the energy and force differences between
identical carbon host structures, but with and
without an intercalated lithium atom. How-
ever due to the fact that the lithium interca-
lation energies are significantly larger in mag-
nitude than the electrostatic lithium-lithium in-
teraction energies, they were not able to re-
cover the latter from the data to a satisfac-
tory degree and had to manually add an ex-
tra correction term (fitted to DFT) in order
to account for those contributions. To avoid
similar shortcomings, we rather base our ap-
proach on Density Functional Tight Binding
(DFTB),19 a semi-empirical—and thus com-
putationally much cheaper—approximation to
Density Functional Theory (DFT),20 which has
been the most common technique for high-
accuracy electrochemical simulations for many
decades.21 However, since DFTB’s speedup
is achieved by pre-calculating atomic interac-
tions to avoid expensive integrations at run-
time, this comes at the cost—or rather, initial
investment—of pairwise parametrization. As
of now, no Li-Li and Li-C DFTB parameters
are available. In the following, we combine for
the first time the recently developed Particle
Swarm Optimization (PSO)22 parametrization
approach as first proposed by Chou et al.23 with
a more flexible ML repulsive potential,24 to ob-
tain finely-tuned parameters for this system—
taking advantage of its physics, albeit perhaps
at the expense of some transferability. Let us
however stress that the parametrization pro-
cedure employed here remains completely gen-
eral, as the system specificity lies entirely in the
choice of the training set(s).

Methods
DFTB: electronic part
In DFTB jargon, the so-called “electronic part”
includes the semi-empirical band structure and
the Coulombic contributions to the total en-
ergy of the system.21 These depend paramet-
rically on the diagonal elements ε of the non-
interacting Hamiltonian, the Hubbard-U and
a confinement potential which is used to cut
off the diffuse tails of the basis orbitals. For
the free atom, the first two quantities are tab-
ulated for most elements or can be calculated
with DFT. However, using the free atom values
is an approximation, and the decision whether
it is justified must be made carefully on a case
to case basis. The confinement potential, on
the other hand, is always treated as a param-
eter. Quadratic25 and general power-law func-
tional forms26 are commonly used, as well as
the Woods-Saxon potential23 (also employed
here) which assures a smoother transition to
zero in the orbital tails. Each of these param-
eters needs to be determined for every chem-
ical species present in the system of interest,
typically in a non-linear optimization process.
In the PSO, each particle then represents a set
of parameters ({ε}, {U}, and the confinement
constants), with which the DFTB interaction is
constructed, so that the parametrization can be
improved by minimizing a cost function. The
central task is thus the definition of a mean-
ingful cost function. Frequently, one uses the
weighted sum of an arbitrary number of contri-
butions f(σDF T , σDF T B), each providing a mea-
sure of the deviation between DFT and DFTB
for some system property σ. Hereby, as we are
optimizing the electronic parameters only, the
chosen target properties must not depend on
repulsion. For our system, we target the band
structures of metallic lithium, graphene and di-
amond. Additional details on the definition of
the corresponding cost function, as well as the
resulting optimal values of the onsite energies ε
and the confinement coefficients, are provided
in the SI. Figure 2 shows our resulting band
structures. Overall, we recognize decent agree-
ment for all band structures, while some de-
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Figure 2: Comparison of band structures calculated with PBE-DFT (blue) and our DFTB electronic part parameters
(red) for metallic lithium, graphene, diamond and LiC6 (left to right). The latter was not part of our cost function
and serves as validation. All the band structures are shifted to the respective DFT Fermi levels.

viations are expected given the minimal basis
in DFTB. For example, the pronounced mis-
match in the conduction band at the H point
in the lithium band structure as well as the in-
correctly direct band gap of diamond can be as-
cribed to this over-simplification in the DFTB
model. For the two carbon systems, we see very
good qualitative agreement for most regions of
the band structures, but notice a small degree
of overall compression towards the Fermi level.
Given the overall agreement and also consider-
ing the fact that the repulsion potential is capa-
ble of quite effectively correcting small imper-
fections in the electronic part, we decide not to
optimize the latter any further in this work—a
decision justified in retrospect by the excellent
results we present. However, let us still em-
phasize the opportunity for improvement here,
should it eventually become necessary.
From a more techincal standpoint, we note in
passing that while during the PSO optimization
we employed an {sp} basis set for lithium, the
production Slater Koster table was constructed
including only the s orbital for lithium (with
the confinement optimized in the {sp} basis).
While this may strike as a rather unhortodox
choice, it is motivated by the concomitant ob-
servation that i) optimizing the lithium confine-
ment with the s orbital only produces inher-
ently wrong results, and ii) the optimization
of the repulsive potential on top of an {sp}-
basis electronic part showed inherent pitfalls
that likely cannot be overcome by any choice
of training set. A detailed justification is pro-
vided in the SI.

DFTB: repulsive potential
It is common practice to assume some ana-
lytical form for the repulsive potential and fit
the functional parameters as to minimize a set
of DFT-DFTB force differences21—a protocol
easily implemented also for the PSO approach.
However, limitations and bias may result from
the choice of said parametrized functional form.
It needs to be sufficiently flexible to cover a
large space of systems and bonding situations.
This typically yields a high dimensional non-
linear optimization problem, which might still
be insufficient to capture unexpected subtle, yet
extremely relevant physical features. We rather
adopt the GPrep method recently developed in
our group,24,27 which employs Gaussian Process
Regression (GPR)28 to create a flexible func-
tional form “on the fly”, while adapting to the
physics captured by the training data set, in-
stead of forcing us to guess it a priori. In the
SI, we give a short introduction to the method
and explain the character and effect of the re-
lated hyperparameters, referring the reader to
Rasmussen28 for the underlying stochastic the-
ory and to24,27 for the application to DFTB
repulsive potentials. For the global damping,
correlation distance, and data noise hyperpa-
rameters, we verified (see SI) that results are
appropriately robust in a sizeable subspace of
the overall hyperparameter-space. The same is
not necessarily true for the cutoff radii Rcut.
Since the electronic energy contribution is en-
tirely based on just a sum of non-interacting
atomic contributions, the repulsion potential
has to account for different chemical environ-
ments affecting the same type of atom. In a
GPR setting it is therefore of paramount im-
portance to sample a sufficiently large set of
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training data which covers all interatomic dis-
tance ranges and chemical environments rele-
vant for a faithful representation of the system
studied. Ideally, it should also be ascertained
that the model quality is stable w.r.t. the ex-
plicit choice of the cutoff radii as well as the
other hyperparameters, at least within physi-
cally motivated boundaries roughly defined by
characteristic lengths of the system, e.g. near-
est neighbour (NN) distances. For instance, it
is generally accepted that adequate Vrep cutoff
values should fall somehwere between the 1st
and the 2nd NN distances for the pair in consid-
eration.21 However Vrep may extend to include
ranges beyond the 2nd NN distance, should the
particular physics the parametrization is aimed
at not be entirely captured by shorter-ranged
repulsive potentials.

Results and discussion
DFTB repulsion training
In terms of DFT functional, our starting point
is PBE,29 which has been used by the major-
ity of researchers working on intercalation phe-
nomena and is known to describe LiC6 well.
However, it does not reproduce the dispersive
interaction between graphene sheets. In or-
der to address this, we finally (see “Set 3”
below) combine the reference PBE calculation
with a Many Body Dispersion (MBD@rsSCS,
throughout the text referred to as MBD)30,31

treatment and the DFTB model with a compu-
tationally cheap Lennard Jones (LJ)32 disper-
sion correction.33 The rationale for this choice
is that PBE should reproduce galleries con-
taining many lithium atoms correctly and LJ-
dispersion should predict empty galleries well,
while not interfering too much with the PBE-
description of the concentrated ones. However,
it is unclear, how this interaction shapes out
for intermediate, dilute lithium stoichiometries.
During our investigations, we find that this
approach works somewhat decently, but needs
some controlled adjustments (vide infra) in or-
der to produce truly satisfactory results.
As a first guess, we construct a set of training

Figure 3: Interlayer distances for graphite (grey), LiC12
(SOC 50%, grey-purple) and LiC6 (SOC 100%, purple)
as a function of RCC

cut. Note that for LiC12 there are two
different layer distances to consider: one for the empty
gallery and one for the full gallery. Here, we plot the av-
erage of the two. The dashed lines show the experimen-
tal layer distances we aim to reproduce, as in Trucano
et al.34 (graphite) and Vadlamani et al.35 (LiC12 and
LiC6). The green coloured area represents the range
within which the absolute deviation between the DFTB
value and the experimental reference is smaller than
0.06 Å.

structures (Set 1) which consists of a balanced
mix of LinC36 super-cells (n ∈ (0, 1, ..., 6)), in
order to represent the entire range of charging
states. Additionally, those structures are rat-
tled (each atom randomly displaced), as well
as compressed or expanded. This procedure
yields a smooth distribution of bond lengths
and forces. We then train a GPR repulsion po-
tential by matching DFTB against PBE forces
for this structural ensemble, aiming at a first,
mostly transferable model. The standard LJ
DFTB correction is subsequently applied on top
of this parametrized DFTB model. With this
approach, we are able to find parametrizations
that reproduce all layer distances (of graphite,
LiC12 and of LiC6) correctly, albeit not for a
stable range of all parameters.
As shown in Figure 3, the choice of cutoff radius
RCC

cut for the C-C repulsion potential does not
have a major influence on the layer-distances
for quite a large range of values. In fact, the
point at which the predictions stop being ac-
curate can be identified as approximately the
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experimental values for the interlayer distances.
Going beyond that with the cutoff radius essen-
tially corresponds to including interlayer inter-
actions in the potential fit, mixing their descrip-
tion with the intralayer covalent bonds. Thus,
the restriction of the cutoff radius we find here
is physically motivated by the range separation
of the interactions that characterize our system:
as the 2nd next neighbour distance in a relaxed
graphene sheet is around 2.45 Å and the layer
distance is 3.35 Å, the cutoff range defined by
the plateau in Figure 3 represents a sweet spot
where the GPR learns 2nd next neighbour inter-
actions but does not yet (mistakenly) take any
interlayer interactions (even in the compressed
structures) into account in the repulsion poten-
tial. However, the same reasoning does not ap-
ply to CC bond lengths, which are not correctly
reproduced if the GPR learns forces beyond the
1st NN distance (see SI). In light of these find-
ings, we select the cutoff value 2.2 Å for the
C-C-repulsion potential. Indeed, we did not en-
counter any reason to change this selection dur-
ing the entirety of this work (despite rigorously
testing it for each of the training data sets).
However, with this first training set we do not
obtain an equally stable plateau as a function
of the Li-C repulsive cutoff (see SI), with the
correct values corresponding to RLiC

cut = 4.0 Å
not belonging to a plateau at all. Furthermore,
the quite strongly distorted graphite planes in
these structures lead to large forces compared
with those acting on the intercalated lithium-
ions, causing a systematic underestimation in
lithium-forces prediction. We tackle the second
problem first: while the rattled, scaled struc-
tures in Set 1 cover a sufficiently large range
of bond lengths, they only account for config-
urations with the lithium-ions sitting over the
centre of a graphite ring, i.e. in a local en-
ergy minimum. We recognize this as the rea-
son for the comparably small lithium-forces.
In order to balance out this structural bias,
we calculate a number of transition paths for
lithium diffusion processes in LiC6 and LiC12
stage I/II compounds using a Nudged Elastic
Band (NEB) method.36,37 We are now able to
extract structures from these trajectories, in
which the lithium ions are subject to stronger

Figure 4: Interlayer distances for LiC12 (SOC 50%,
grey-purple) and LiC6 (SOC 100%, bright purple) as
a function of RLiC

cut , with a fixed RCC
cut set to 2.6 Å. The

repulsion was trained on a set analogous to Set 1 (cf.
text), where the higher-saturated structures were re-
placed by geometries randomly extracted from intra-
layer Li diffusion paths. For LiC12, the plotted inter-
layer distance is the average between the values for the
filled and the empty gallery. The dashed lines show the
experimental layer distances. The yellow coloured area
represents the range within which the results are stable,
however at a wrong value.

forces commensurable with the graphite-layers.
For our second training set (Set 2), we replace
the higher-saturated rattled and scaled struc-
tures with those extracted from the transition
paths. In doing so, we assume higher-saturated
structures to be responsible for the slight con-
traction observed in C-C bonds (see SI).
By this measure, we are able to improve
the accuracy for predicting forces on Li-ions
significantly (albeit still slightly underesti-
mated), without sacrificing the description of
the graphite layers. However, while we do ob-
serve a plateau for the resulting layer distances
with respect to RLiC

cut , the interlayer distances
are not reproduced equally well as in Figure 3
for Set 1 (see Figure 4, yellow area), with the
exception of points 3.5 Å and 4.0 Å which do
not belong to a plateau. This behaviour sug-
gests that our problem here does not lie in the
choice of the training set, but rather in the
treatment of long-ranged interactions.
Let us consider the underlying predicament: so
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far, the DFTB-part of the force residues used
for the ML process is calculated without LJ
dispersion correction. We then construct the
repulsion potential with the purpose of mak-
ing those DFTB calculations match references
based on PBE-DFT, which reliably predicts
layer distances for LiC6. By then using LJ (re-
quired to obtain the correct empty layer dis-
tance in graphite) in our actual DFTB cal-
culations (after the parametrization process),
we cause the aforementioned offset for highly
lithiated compounds. Using LJ already for the
force-residue calculations during the ML seems
like the obvious solution to this problem. How-
ever, this presents a new issue in the lower-
saturation range (LiCx, x > 12). There, we pre-
viously fitted the repulsion to PBE-DFT refer-
ences, which are not correct in that range with-
out dispersion correction. The resulting DFTB
forces are then shifted by LJ towards the cor-
rect value (as is indicated by the quite decent
results for LiC12 with Set 2). But after the
modification, we would then fit the final DFTB
forces (that result after applying the LJ) to the
(incorrect) PBE-DFT references, thus improv-
ing our performance for highly saturated sys-
tem states, but ruining it for dilute ones, by
effectively double counting dispersive contribu-
tions. It becomes apparent that in order to
make this approach work, we need to utilize dis-
persion corrected DFT reference forces which
are also correct for low saturation states and,
at the same time, compatible with the compu-
tationally cheap DFTB-LJ correction.
Our ansatz is that we can—to a degree—encode
the difference between the LJ dispersion and
the “true” dispersion into the repulsion poten-
tial. At this point we stress that ideally, both
the true, non-local exchange correlation func-
tional in DFT and an ideal repulsion energy in
DFTB would already encompass all dispersion
effects, and it is solely due to approximations
in the derivations, e.g. of GGAs, that they
do not in these models. Therefore, rather than
mixing our repulsion potential with something
fundamentally different (which would be phys-
ically questionable), what we do here simply
corresponds to partially adding a contribution
back in, that should have been there in the first

Figure 5: Interlayer distances for LiC12 (SOC 50%,
grey-purple) and LiC6 (SOC 100%, bright purple) as
a function of RLiC

cut , with a fixed RCC
cut set to 2.6 Å. The

repulsion was trained on a set analogous to Set 2 (cf.
text), where 70% of the structures were replaced by
geometries with MBD-corrected forces. For LiC12, the
plotted interlayer distance is the average between the
values for the filled and the empty gallery. The dashed
lines show the experimental layer distances. The yellow-
hatched area represents a range within which the results
are stable and correct, however we consider them not
ideal.

place. To our knowledge, the currently best
way to calculate dispersion corrected lithium
intercalated graphite, with correct layer dis-
tances predicted for the entire saturation range,
is the Many Body Dispersion (MBD) correc-
tion.30 This method is computationally rather
expensive, but since we only need to run DFT
calculations for our training data set, which is
very limited in size, this is not vital to us.
In practical terms, we then build a Set 3
where DFTB-DFT force residues are replaced
by DFTB(LJ)-DFT(MBD) force residues. We
do realize that this approach most likely comes
with some cost in terms of transferability. In or-
der to retain as much of it as possible, we choose
not to replace all force residues, but only≈ 66%
(more precisely, only for structures containg no
or 1 lithium atom), which proves sufficient to
demonstrate the effectiveness of the presented
method in a general way. Nonetheless, further
investigating the effect this percentage has on
the performance is certainly a task that should
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Figure 6: Top: 2D repulsion potential landscape (units eV ) expressed by the colour bar) depending on the chosen
Li-C cutoff radius (y-axis) for Set 2 (left) and Set 3 (right). The black and green dashed lines represent the next
neighbour Li-C distances for sets 2 and 3 respectively. The diagonal lines illustrate the cutoff radii, at which the
potential is set to zero. The plateaus are highlighted between thin dotted lines. Bottom: (Left) Influence of the
inclusion of MBD vs LJ force residues in the training data on the repulsion potential (units eV (expressed by the
colour bar). (Right) Detailed repulsion potentials at RLiC

cut = 5.0 Å.

be tackled in the future. Of course, alterna-
tively to our approach, it is possible to sim-
ply apply the MBD correction scheme directly
to our DFTB calculations. However, doing so
would cost us one to two orders of magnitude
in speed, as MBD then becomes the computa-
tionally dominating step in production DFTB
calculations.
Using the previously explained modifications,
we have succeeded at shifting the predicted
interlayer distances (within the stable RLiC

cut

plateau) into the very close proximity of the ex-
perimental reference values for both LiC6 and
LiC12, as shown in Figure 5. To be precise, the
ranges of RLiC

cut = ∼ 3.3−4.3 Å and ∼ 4.3−5.3 Å

should be regarded as two distinct plateaus,
both close to the correct experimental values.
However, we shall consider the second as our
final plateau, where the resulting interlayer dis-
tance fall between the experimental and the
DFT reference values, since we trained against
DFT reference forces. Of note, the predicted
interlayer distance for LiC12 becomes wrong al-
ready at RLiC

cut = 5.5 Å. Once again this is a
physically motivated boundary: it is the dis-
tance at which the Li atoms start to “feel” the
next layer. In LiC6, which has a larger inter-
layer spacing and for which the resulting in-
terlayer distance is correct at that point, this
happens for RLiC

cut > 5.5 Å.
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Especially the excellent results for the stage II
compound LiC12 show that our parametrization
is now able to handle both mainly ionic concen-
trated and mainly dispersive dilute layers to a
satisfactory degree. In Figure 6, we illustrate
the effect our modification has on the repulsion
potential landscape for a wide range of Li-C
cutoff radii. First (and most notably), we have
moved and solidified the local minimum related
to the next-neighbour lithium-carbon interac-
tion (see bottom right). For the Set 2 and
Set 3 potentials, the minima (black and green
dashed lines respectively) are located at atomic
distances of 2.33 Å and 2.30 Å respectively,
which correspond to LiC6 interlayer distances of
3.80 Å and 3.73 Å, the exact values which do, in
fact, result from the relaxation of those struc-
tures, using the two repulsion potentials respec-
tively. The 2D maps (top) show that this be-
haviour is apparent for an entire range of cutoff
radii, thus ruling out the possibility that the fit
is only accidentally correct (as it happens, e.g.,
for Set 1 with RLiC

cut = 4.0 Å. We can also clearly
see the upper (∼ 5.3 Å) and lower (∼ 4.3 Å)
boundaries for the cutoff radius, beyond which
the physicality of the model falls apart. They
define exactly the range within which we find
the stable cutoff dependency plateau, which is
now at the correct numerical value as shown in
Figure 5. We may identify the upper boundary
at 5.3 Å (as discussed above), as the distance
between a lithium ion and the second closest
graphene sheet, which is an intuitively plausible
limitation. It is less obvious, though, to assign
a clear physical meaning to the lower bound
at 4.3 Å, as it cannot be directly related to
any particular structural feature of LiCx. The
most likely cause, we believe, is that the cosine-
shaped cutoff function employed in the GPR
framework starts cutting off physically relevant
details from the repulsion potential below that.
A physically motivated lower bound of differ-
ent nature may be identified by evaluating the
relative RMSD of forces as a function of Li-C
cutoff, shown in the SI. Overall, we now observe
two separate Li-C cutoff plateaus: between ap-
proximately 4.3 Å and 5.3 Å, we obtain accu-
rate layer distances (Figure 5), while for radii
above roughly 4.0 Å and until 6.0 Å, our pre-

dictions for forces and transition energies are
correct. This duality can very simply be ex-
plained by the fact that the first property is
mostly a z-direction phenomenon (and interac-
tions with the second closest graphene sheet
limit the physicality of our model), while the
other takes place almost exclusively in the xy-
plane, where no such limitation applies, hence
the broader plateau. Given this difference in
fundamental nature, it is very plausible to trust
both these plateaus. Thus, their overlap (4.3–
5.3 Å) defines the region within which any value
of the Li-C cutoff radius produces an almost
identical parametrization that performs very
well, for all our benchmark criteria, in a sta-
ble and trustworthy manner.

Interlayer distances and diffusion
barriers
Table 1 reports some resulting inter-layer dis-
tances and diffusion barriers based on our
DFTB parametrization, compared with exper-
imentally determined values, as well as previ-
ous theoretical findings. As a quick reminder,
stages I, II and III correspond to every, every
other and every third gallery being filled (to any
degree) with lithium. Additionally, one may de-
scribe the concentration of the intercalant in
a filled gallery as dilute (low) or concentrated
(high), thus allowing for a simple classification
of fundamentally different compounds. Here,
however, we take only concentrated stages into
consideration.
For all calculations, we chose a Li-C cutoff ra-
dius of 5.0 Å, following the findings discussed
above. As Table 1 clearly illustrates, we system-
atically outperform the method by Krishnan et
al.38—in terms of accuracy—for every structure
they provide comparison for. This is especially
remarkable considering the fact that they used
full GGA-DFT with dispersion corrections in
post-processing, which is the current state-of-
the-art approach, as well as significantly more
computationally expensive than our method.
Subsequently, we investigate intra-layer next-
neighbour diffusion barriers and compare our
results to recent experimental findings from
Ref.40 (based on muon spin relaxation spec-
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Table 1: Summary of the interlayer distances resulting from our DFTB parametrization (via structure
optimization using the BFGS algorithm39) compared with experimental values from Trucano et al.34

(graphite), Vadlamani et al.35 (LiC12 and LiC6). For the LiC18 reference, we assume the filled gallery
and the empty galleries to have the same interlayer spacing as LiC6 and graphite respectively. For
stage II and III compounds, we consider the average layer distance here. Furthermore, we show the
relative deviation of our results and compare them with those reported by Krishnan et al..38

(Average) inter-layer distances with detailed analysis of layer spacing and barriers.
compound experimental DFTB DFT38 filled empty barrier

graphite – 3.355 Å +17 mÅ +62 mÅ – +17 mÅ –
LiC18 stage III 3.470† Å +35 mÅ +173 mÅ +198* mÅ −98* mÅ 468 meV
LiC12 stage II 3.511 Å +52 mÅ −16 mÅ +148* mÅ −147* mÅ 480 meV
LiC6 stage I 3.687 Å +46 mÅ +56 mÅ +46 mÅ – 503 meV
*: note that these numbers are not errors, but differences between specific and average layer distances
†: estimated from experimental values for graphite and LiC6.

troscopy) and theoretical from Ref.41 (calcu-
lated at the LDA-DFT level without dispersion
correction, which is only reliable for the pre-
dominantly ionic, filled state of charge).
Our calculations yield purely microscopic re-
sults within 50 meV from each other for all
three relevant compounds, as is shown in Ta-
ble 1. The deviations between them correlate
to the slight differences in the filled-layer spac-
ing of the different structures. Our 503 meV
barrier for the elementary diffusion in LiC6 is
in perfect agreement with the value of 490 meV
reported by Toyoura et al.41 In contrast, the ex-
perimentally determined active barriers of 270
meV for LiC6 and 170 meV for LiC12 show a
strong dependency on the systems stage. We
believe this difference to be caused by concerted
effects. Capturing those using kinetic Monte
Carlo simulation is something we intend to do
in the near future.

Conclusions and outlook
In this work, we put forward—for the first
time combining particle swarm (i.e. PSO)
and machine learning24 (i.e. GPR) ap-
proaches for this task—a well-performing
DFTB-parametrization for lithium intercalated
graphite which is capable of very accurately
reproducing various structural properties and
qualitative trends relating to the intercalation
mechanism for a wide variety of LiCx com-
pounds. In the course of this process, we be-

lieve to have shown that Density Functional
Tight Binding (DFTB) is a superior approach
for modelling intercalation compared with force
field methods, including the more sophisticated
machine learning approaches (e.g. the GAP
by18 requires a manual correction term for
lithium-lithium interactions which our method
does not). Furthermore, we share key details
and choices along this process and thus provide
guidance for similar endeavours in the future.
Acknowledgement CP gratefully acknowl-
edges funding from the German Research Foun-
dation (DFG – Deutsche Forschungsgemein-
schaft) through grant # PA 2932/1-1.

Supporting Information Avail-
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charge at ...
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tional details, PSO cost function, choice of ba-
sis set, GPrep hyperparameters, description of
training sets, full validation.
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1 Computational details

DFT reference calculations have been performed by means of the all-electron electronic

structure code FHI-aims? ? ? with light settings and default tier-2 basis sets. We used the

GGA–based PBE exchange correlation functional? ? with the atomic Zero-Order Regular

Approximation (ZORA) relativistic correction,? a converged k-point grid of 7 × 7 × 7 and

default convergence criteria for the self-consistent cycle. DFTB calculations have been exe-

cuted via the DFTB+ code? version 19.1, with a k-grid matching that of the DFT calculations.

The convergence criterion for the self-consistent charges has been set to a relative difference

of 10−8. To facilitate convergence, we used the standard Fermi distribution filling with an

electron temperature of 0.0001 K and the Anderson mixer? with a mixing parameter of

0.1. Geometries have been constructed and analysed by means of the Atomic Simulation

Environment (ASE)? which we also used as a basis framework for all force- and energy-

calculations, structure relaxations (specifically using the BFGS algorithm? ) and barrier

calculations. For the latter, we employed the Climbing Image Nudged Elastic Band (CI-

NEB)? ? algorithm, with transition paths consisting of five images unless stated otherwise

and a FIRE optimizer.? In those instances when we employed dispersion correction, we used

the Lennard Jones (LJ) approach? with Universal Force Field (UFF) parameters? for DFTB

and range-separated self-consistent screening Many Body Dispersion (MBD@rsSCS, through-

out the text referred to as MBD)? ? for DFT, with default range separation parameters.

The PSO-based parametrization routines used for the electronic part of DFTB were imple-

mented within our own development version (available upon request) of the hotbit frame-

work (https://github.com/pekkosk/hotbit),? augmented, among other features, with the

Woods-Saxon confinement potential form, cost function modules for selected properties, and

an interface with the PSO python package pyswarm (https://pythonhosted.org/pyswarm/).

The GPR-based DFTB repulsive potential was generated with the python package GPrep,?

available on Zenodo at https://zenodo.org/record/3697913. As for all the systems of interest

two or more lithium atoms remain separated by large distance, we hereby parametrize the
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repulsive potentials for C-C and Li-C only. A Li-Li repulsive potential is subject of ongoing

work and will be released in the future.

2 PSO cost function

A band structure with n bands, sampled at m special points (or, more generally, at any set

of m k-points) may be represented by an array BS of the following form:

BS = (x00, x01, ..., x0n, x10, ..., x1n, ..., xm0, ..., xmn) (1)

where xij represents the jth band energy at the ith special point, e.g., x00 = (Γ, EΓ,0).

With such a representation one may map the band structure to a (symmetric) distance

matrix D, of the following form:

D =




0 d01
00 · · · dmn00

d00
01 0 · · · dmn01
... ... . . . ...

d00
mn d01

mn · · · 0




(2)

The DFTB band structure will, by construction of DFTB, only include points belonging to

the valence band and to the conduction band up to the basis set limit. Correspondingly, the

DFT band structure representation for the PSO cost function is only built with points also

accessible to DFTB.

The special points and the number of compared bands have been selected empirically, with

the goal of representing the most characteristic regions of the band structures properly (5

bands at the K and the Γ points for graphite, as well as the W and the Γ points for diamond,

and 4 bands at the H and the Γ points for lithium).

The cost function for PSO is then chosen as the RMSD between the DFT and DFTB band

structure distance matrices.
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The final electronic parameters were selected from a number of PSO runs with varying

number of particles, where some runs included band structures for both elements in the cost

function, while others were run separately for Li and for C. The two procedures did not yield

significantly different parameters. The confinement constants were optimized in a parameter

space varying in the following ranges:

Species r0 rcut

C 1-3 Bohr 3-7 Bohr

Li 2-5 Bohr 4-8 Bohr

The carbon confinement was subsequently adjusted by hand to be slightly looser in order to

improve the descriptions of CC bond lengths.

The onsite energies ε were only slightly optimized starting from initial guesses taken from

Ref.? The Hubbard U parameters were kept fixed at those taken from the same reference.

The optimized electronic parameters are the following:

Species εs εp r0 rcut

C -0.5053 Hartree -0.1942 Hartree 3.11 Bohr = 1.64 Å 6.42 Bohr = 3.40 Å

Li -0.1057 Hartree -0.0087 Hartree 6.42 Bohr = 3.40 Å 6.72 Bohr = 3.55 Å

3 Lithium {sp} vs {s} basis

As mentioned in the main text, the electronic parameters for lithium were optimized in an

{sp} basis, while only the s orbital was included in the construction of the final Slater Koster

tables. The choice is motivated in the following.

In an initial tentative GPR parametrization using force residues calculated with an {sp}

DFTB basis, we noticed that the GPR model struggled to produce satisfactory results.

In particular, we noticed a consistent trend to produce systematically too short interlayer

spacings regardless of the choice of the training set, as well as systematically overestimated

forces, and, as a consequence of both the above, systematically too large diffusion barriers.
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Figure S1: Isosurface plots of total charge density with DFT (left), DFTB in a Li s basis (middle) and DFTB
in a Li {sp}.

Intuitively, this trend can be attributed to—probably pathological—overbinding. Substantial

support of this hypothesis comes from a qualitative analysis of the DFT and DFTB charge

densities. Figure S1 shows total self-consistent charge densities for DFT (left), DFTB with

an {s} lithium basis (middle), and DFTB with an {sp} lithium basis (right). The isosurface

cutoff for the top row was chosen such that the valence s density for lithium is showing

similarly for all three. Hereby, both DFTB {sp} and s exhibit nearly identical features.

In the bottom row, a smaller cutoff is selected such that the contribution from the more

contracted p density is revealed (for DFT, the Li core density is visible, which is not present

in DFTB). The additional spurious bonding charachter for DFTB in an {sp} is clearly visible

in panel (f).

The same effect is visible when analysing the charge density difference between the interacting

system and the sum of fragments, as a qualitative measure of charge transfer between the

graphite host and the lithium. This is shown in Figure S2 . Of note, the densities shown here

were calculated on a non-periodic slab, therefore the finite-size edge effects are to be ignored:

we shall only focus on the central region depicting the interaction between the lithium and

the graphitic host.

Despite the fact that (as shown in the top view), the charge transfer description across a

single graphite layer is better captured in the {sp} basis, the pitfall of the latter is evident
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Figure S2: Isosurface plots of charge density difference between the interacting graphite+lithium system and
the sum of non-interacting fragments, with DFT (left), DFTB in a Li {sp} basis (middle) and DFTB in a
Li {sp}. Red represents charge accumulation, blue represents charge depletion.

when inspecting the charge transfer between graphite layers and the lithium atom (side view).

DFTB in an {sp} basis here shows high extra electron density (red crown-shaped feature

in panel (c)) which in the DFT is much more localized in the center of the benzene ring

above the Li and, in the vicinity of the Li, masked by a depleted area. In the {sp} basis

the electron density is not sufficiently transferred to the graphene layers, which manifests as

partial covalent bonding—in particular, once we start moving the Li across a barrier to the

next ring.

Additional arguments in favour of an s-only (albeit sp-optimized) basis, at least for the time

being, are given in Section 7, based on force-matching between DFT forces and DFTB forces

including the GPrep repulsion. However, those are repulsion-dependent and therefore any

discussion is limited to the parametrizations (with Vrep) we can access with the particular

dataset we produced throughout this work, while the arguments above are pertinent to the

electronic part only, and therefore more general.

As a final remark, we stress that DFTB operates in a truly minimal (valence only) basis

set. While it is generally true that larger basis sets will produce more accurate electronic

properties, this is not necessarily valid when a basis set is so heavily truncated. With such
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Figure S3: Lithium band structures calculated with DFTB, with electronic parameters obtained optimizing
the curvature at the gamma point (left) and the overall valence band (right).

a limited budget, the addition of a single basis function may introduce distortions that

occasionally end up, de facto, worsening the description of the electronic structure.

On the other hand, optimizing the lithium 2s orbital only in the PSO—not surprisingly—

produces truly unconvincing band structures regardless of the choice of the technicalities

of the cost function (e.g. either targeting the best curvature at the gamma point, or the

best overall valence band), as shown in Figure S3. The latter option has a decent over-

all dispersion, at least in terms of energy range, but clearly all the curvatures are wrong.

The first option sacrifices the range of the dispersion in favour of a correct curvature at

the gamma point. With confinement radii around 3 Bohr, both options result in a more

compressed lithium atom w.r.t. the {sp}-optimized confinement, with the risk of produc-

ing systematically underbound structures due to reduced overlap. This may in principle be

compensated by the repulsive contribution—which, we remind, is known to partially correct

the imperfections of the electronic part. However, there is only so much extent to which the

repulsive potential can actually do that effectively, while remaining acceptably smooth and

transferable.

In the light of all the above, we prefer to rather work with the correct confinement for

the complete valence basis—just “switching off” the p contributions to the Hamiltonian

and overlap integrals. This presents the additional advantage that the parameter set can
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be updated at will, in perspective, to include the full {sp} interaction without having to

reconsider the entire parametrization process, but rather focusing on the GPR part only. For

future such revisions of the parameters, we make both Slater Koster tables and both GPrep

datasets available upon request, keeping in mind that, for a working {sp} parametrization,

the datasets most likely need to be extended.

4 GPR repulsion hyperparameters

Our implementation is essentially a simplified form of the algorithm developed by Csányi et

al. for the generation of the already mentioned interatomic GAP potentials.? Similarly, we

here employ gaussian kernels of the form:

kSE( ~x1, ~x2) = δ2 exp
(
−( ~x1 − ~x2)2

2θ2

)
(3)

The parameters of kSE are commonly referred to as hyperparameters and need to be opti-

mized. θ is a length scale within which the target values are similar. δ2 is the target variance

in the prior distribution. The data noise σn is also considered to be a hyperparameter. In

fact, the posterior mean only depends on the quotient σn/δ. In short, it can be said that

θ is a measure of smoothness. The higher the value, the more our repulsion potential tries

to “avoid” high curvatures and frequent curvature changes, which can have quite a criti-

cal effect (see Figure S4, left). Similarly, but less importantly (see Figure S4, middle), σn

should be just large enough to prevent over-fitting, but not much larger, since the posterior

distribution will then avoid high amplitude targets. Based on these considerations and tak-

ing into account our present system via some potential-screening, we employ θ = 0.4 and

σ = 2. ·10−2. To fulfill the requirement for interatomic potential to vanish at large distances,
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Figure S4: Visualization of the impact which covariance parameter θ (left), data noise parameter σ (middle)
and the damping parameter β have on the shape of an exemplary repulsion potential (top) and repulsive
force (bottom).

the kernel is modified with a multiplicative cutoff function:

fcut(R) =





e−βR R < Rcut − d

e−βRg(R) Rcut − d < R < Rcut

0 R > Rcut

(4)

where

g(r) =
cos

(
πR−Rcut+d

d

)
+ 1

2 . (5)

This damping function smoothly sets the potential to zero at Rcut over an interval of width

d. In practice, e−βR is nothing but the exponential prior of the GPR model, and also allows

to put some extra exponential damping onto the tail. Overall, when selecting β, opposing

effects need to be taken into account: too low a value will typically not smooth out the

transition to zero enough, while too large a value may cause the loss of some (possibly)

important physical subtleties. In light of these principles, we set β = 1.0, just large enough

to ensure smoothness at the zero-transition, but not so large to completely flatten out the

long-ranged potential tail (or even the entire potential, see Figure S4, right).
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5 Training and validation sets

5.1 Set 1 - Rattled structures with varied unit cell volume

As mentioned in the main text, we begin with a training set made of a balanced mix of LinC36

super-cells (n ∈ (0, 1, ..., 6), 20 structures each). With this, we loosely follow the procedure

suggested in.? There, the author used a set of distorted diamond-structures to test the GPRep

framework. The distortion was done i) by scaling the unit cell volume by factors between

0.75 and 1.75 and ii) by randomly displacing (rattling) the atoms with a standard deviation

of 20% of the scaled equilibrium nearest-neighbour distance. The purpose of this set was

to test performance and resilience of the model for highly asymmetric atomic environments,

with forces of more than 300 eV/Å. In contrast, the goal in this work is not to drive the GPRep

framework to its limits, but to achieve a parametrization that performs well for real systems

which are not in equilibrium, but close to it. Having said this, we still believe it is important

to incorporate at least some strongly distorted structures into our training data which serve

the purpose of guaranteeing a satisfactory level of transferability (a view also shared by other

researchers working with parametrizations? ). However, we would like to assure that these

structures do not dominate the fitting procedure. Relatedly, we recognize, that quantitative

accuracy in those high-force regions is not of great importance, as long as the qualitative

behaviour there—ensuring that the system leaves these regions immediately—is intact. In

light of these considerations we make the following adjustments:

• We limit the factor for the volume scaling to only range from 0.94 to 1.5, thus not

compressing stiff covalent bonds quite as much.

• Also, we modify the standard deviation of the rattling so that it does not amount to

20% by default, but a random value between 0% and 20% instead, thus giving a higher

emphasis to structures that are close to equilibrium.

• Finally, we geometrically pre-screen all our structures in terms of bond lengths, which
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we do not allow to be shorter than 75% of the equilibrium bond lengths.

By these measures, we assure convergence of almost all (except 5) reference calculations and

limit our appearing forces to below 70 eV/Å.

Set 1 therefore contains 135 structures and 15831 force components.

5.2 Set 2 - Addition of transition states

In Set 2, we added structures extracted from Li2C36 stage I and II NEBs (20 structures each)

and from a LiC36 NEB (45 structures), with gaussian rattling applied to the moving lithium

atom only in the plane perpendicular to the diffusion path. Concomitantly, we removed the

rattled and scaled LinC36 structures with n > 1.

Set 2 contains 120 structures and 13386 force components.

5.3 Set 3 - Dispersion-corrected force residues

In Set 3, we replaced the DFTB-DFT force residues from all the structures LinC36 with

n ∈ (0, 1) (including NEB) with DFTB(LJ)-DFT(MBD) force residues. This amounts to

about 70% of structures and 66% of force components. The choice of limiting the reference

MBD forces to structures containing no lithium atoms or only one is motivated by the

observation (also confirmed in Ref.? ) that MBD (in the implementation with analytical

forces) tends to exhibit numerical issues for structures containing more than one Li atom,

due to limitations of the Hirshfeld partitioning. As those issues occasionally produce negative

polarizabilities, we only picked those calculations for which this did not happen.

5.4 Validation set

The validation set includes 45 structures (for a total of 5265 force components) extracted

from a LiC36 NEB, with additional gaussian rattling (different from that applied in Set 2).

We focused the training set on NEB as we intended to place emphasis on analysing parallel
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(i.e. in the xy plane) and perpendicular forces separately, which are of particular importance

in the diffusion processes which ultimately motivate the present work.

6 Plateau plots

In this Section, we report and discuss both RCC
cut and RLiC

cut scans of selected properties for all

the training sets employed throughout this work.

For structural properties, we evaluate both C-C bond lengths and average interlayer distances

for graphite, LiC12 and LiC6. As an additional benchmark, we evaluate the performance in

prediction of forces. We choose the relative Root Mean Square Deviation (rRMSD) of forces

and the Mean Absolute Force compared with the DFT references, as a measure of how much

our predictions are scattered, and of whether they are scattered around the correct mean,

respectively. Of note, a correct Mean Absolute Force does not necessarily correspond to

correct forces overall, especially if—as in our case—the validation set contains approximately

symmetric forces. This is also evident in the force matching plots in Section 7.

To define whether or not points belong to a plateau, and whether or not we hit an adequate

target of accuracy, we define the following thresholds (length units are in Å and force units

in eV/Å):

Quantity C-C bond length Avg. layer spacing Mean Absolute Force Force rRMSD

Plateau if pt within 0.005

wrt prev/next

pt within 0.02

wrt prev/next

pt within 0.015

wrt prev/next

pt within 0.02

wrt prev/next

green if pt within 0.01

wrt expt

pt within 0.06

wrt expt

pt within 0.025

wrt DFT

pt 0 > 0.5 (C)

pt 0 > 0.2 (Li)

Figure S6 (top row) shows the C-C cutoff scan for a Li-C cutoff of 4.0 Å for all the analysed

quantities. The interlayer distances are correct for the entire range of C-C cutoff radii, and

the C-C bond, in a smaller plateau, slightly underestimated (albeit with the correct ordering
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and within a still acceptable error). The Mean Absolute Force is only correct outside the

plateau for the first two quantities, and the rRMSD of forces is beyond our chosen threshold

for the entire C-C cutoff range. Arguably, although, the description of forces here appears

relatively acceptable.

However, the second row shows how results for Set 1 are only “accidentally” correct for a Li-C

cutoff of 4.0 Å. After scanning the results for interlayer distance for the C-C cutoff (see main

text), we investigate the Li-C cut-off in the same way. The Li-C repulsion potential does not

influence our prediction of graphite in any way, so here the only relevant benchmarks are

the LiC12 and LiC6 layer distances. For the Li-C cut-off, we barely observe a sizeable range

of values for which the resulting layer distances are constant (and especially not constant

at the correct value). We are able to get a parametrization that predicts the correct result,

but only for a cutoff radius in the very close proximity of 4.0 Å. Additionally, the Mean

Absolute Force and rRMSD of forces are largely off for every choice of Li-C cutoff, with the

only acceptable values, again for 4.0 Å and not belonging to any plateau.

The two middle rows show the effect of the modifications introduced in Set 2. As we now

observe Li-C plateaus for Li-C cutoff values larger than 4.0 Å, from now on we show C-

C scans for a Li-C cutoff of 5.0 Å—the one we ultimately chose. The removal of higher

saturated rattled and scaled compounds brings the C-C bond lengths to the desired level

of accuracy, in the same C-C cutoff plateau discussed in the main text and in a larger Li-

C plateau (not surprisingly, as the Li-C cutoff only influences this quantity indirectly, via

minor modifications of the C-C Vrep in the simultaneous fitting of both potentials in the

GPrep procedure). However, all the other quantities are systematically wrong for any choice

of C-C cutoff. With respect to the Li-C cutoff, the modifications in Set 2 stabilize, to varying

extents, all the targeted quantities, however not to the desired level of accuracy.

The two bottom rows show the same C-C and Li-C cutoff scans for Set 3. The introduction

of MBD-corrected force residues finally yields stable and correct results for the largest range

of both C-C and Li-C cutoff choices.
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Figure S5: C-C and Li-C repulsion cutoff scans for Set 1 (top), Set 2 (middle) and Set 3 (bottom). Evaluated
properties are, left to right: C-C bond lengths, interlayer spacings, mean absolute force and rRMSD of forces.
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7 Force matching

Figure S6: Force matching plots for Sets 1 to 3, as well as Set 3 with an {sp} basis, for the validation set
defined in Section 5.

Training on Set 1 produces heavily scattered and severely underestimated carbon perpen-

dicular forces. Lithium perpendicular forces are also underestimated, in line with the fact

that the training set is lacking NEB geometries.

The addition of NEB geometries (Set 2) corrects the slope for lithium perpendicular forces,
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while the lithium parallel forces become less scattered, but underestimated.

Set 3 presents overall the best compromise (with some residual carbon deviation), despite

losing some accuracy in lithium perpendicular (not visible in the plateau plots which are

dominated by parallel forces). The latter fact seems to actually be a fortunate accident,

which might be responsible for correcting the layer spacings by placing some extra attraction

in the z direction.

As a final remark, we compare the results for Set 3 in a Li {sp} basis. First and foremost, a

direct comparison with the same training set in a Li {s} basis shows that the latter is visibly

better overall, especially in the lower-force region. In addition to that, two main features

here suggest that, at least with the current dataset, we cannot achieve a truly satisfactory

parametrization in the Li {sp} basis: i) there is a considerably larger scatter of carbon forces

than all the training sets in an {s} basis. While, generally, wrong slopes in force matching

scatter plots indicate systematic errors that can be fixed by a different choice of training sets,

a large scatter around the correct slope usually indicates that the model has hit its limit; and

ii) much more subtly, some of the (both parallel and perpendicular) carbon forces appear

“split” around two different slopes, a trend which we also observed, even more pronounced,

with different tentative training sets not shown here. To be fair, this also happened for Set

1 in the {s} basis and was corrected by a more careful choice of the training set. However,

here our best training set does not eliminate the problem completely. We speculate that

this residual structure in the scattered forces may be due to the fact that the addition of

the Li p orbital essentially breaks the hexagonal symmetry. Both the above suggest that the

lower isotropy of the lithium orbitals in an {sp} has an effect on the chemical environment,

“transferring” error on the carbon forces. Given the quality of the results with the Set 3, Li

{s} basis parametrization, and given that a Li {sp} produces too short interlayer spacings

anyway (3.547 Å for LiC6 with Set 3), with dramatic effect on diffusion barriers, we do not

feel the need to pursue the {sp} parametrization any further in this work, but we once agan

remark the possibility of doing so in future revisions.
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