000889912 001__ 889912
000889912 005__ 20240712112854.0
000889912 0247_ $$2doi$$a10.1016/j.resconrec.2020.105010
000889912 0247_ $$2ISSN$$a0921-3449
000889912 0247_ $$2ISSN$$a1879-0658
000889912 0247_ $$2Handle$$a2128/26857
000889912 0247_ $$2altmetric$$aaltmetric:85968830
000889912 0247_ $$2WOS$$aWOS:000569614800006
000889912 037__ $$aFZJ-2021-00520
000889912 082__ $$a690
000889912 1001_ $$0P:(DE-HGF)0$$aMeys, Raoul$$b0
000889912 245__ $$aTowards a circular economy for plastic packaging wastes – the environmental potential of chemical recycling
000889912 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000889912 3367_ $$2DRIVER$$aarticle
000889912 3367_ $$2DataCite$$aOutput Types/Journal article
000889912 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611219021_17161
000889912 3367_ $$2BibTeX$$aARTICLE
000889912 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889912 3367_ $$00$$2EndNote$$aJournal Article
000889912 520__ $$aPlastic packaging waste faces increasingly stringent sustainability targets such as recycling rates of 55% imposed by the European Commission. To realize the vision of a circular economy, chemical recycling is advocated as a large-scale avenue to decrease fossil resource depletion and greenhouse gas (GHG) emissions. In this work, we develop a theoretical model for chemical recycling technologies assuming ideal performance. The theoretical model allows us to compute the minimal environmental impacts for chemical recycling technologies and compare them to real-case benchmark waste treatments. Thereby, we robustly identify chemical recycling technologies that will not result in environmental benefits, since their minimal environmental impacts are already higher than those of current benchmark waste treatments. In this way, we show that PET, HDPE, LDPE, PP and PS should not be recycled chemically to refinery feedstock or fuel products and rather be treated by mechanical recycling and energy recovery in cement kilns in order to reduce global warming impacts. In contrast, chemical recycling to monomers or value-added products could potentially reduce global warming impacts compared to all benchmark waste treatments by up to 4.3 kg CO2-eq per kg treated PET packaging waste. By analyzing 75 waste treatment scenarios for 5 environmental impacts, our analysis offers guidance to stakeholders involved in chemical recycling to identify the most promising as well as the least promising chemical recycling technologies.
000889912 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000889912 588__ $$aDataset connected to CrossRef
000889912 7001_ $$0P:(DE-HGF)0$$aFrick, Felicitas$$b1
000889912 7001_ $$0P:(DE-HGF)0$$aWesthues, Stefan$$b2
000889912 7001_ $$0P:(DE-HGF)0$$aSternberg, André$$b3
000889912 7001_ $$0P:(DE-HGF)0$$aKlankermayer, Jürgen$$b4
000889912 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b5$$eCorresponding author$$ufzj
000889912 773__ $$0PERI:(DE-600)1498716-8$$a10.1016/j.resconrec.2020.105010$$gVol. 162, p. 105010 -$$p105010 -$$tResources, conservation and recycling$$v162$$x0921-3449$$y2020
000889912 8564_ $$uhttps://juser.fz-juelich.de/record/889912/files/1-s2.0-S092134492030327X-main.pdf$$yOpenAccess
000889912 909CO $$ooai:juser.fz-juelich.de:889912$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889912 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000889912 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000889912 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000889912 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000889912 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
000889912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b5$$kFZJ
000889912 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b5$$kRWTH
000889912 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zürich$$b5
000889912 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000889912 9141_ $$y2020
000889912 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000889912 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-02
000889912 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000889912 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-02
000889912 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000889912 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-09-02
000889912 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bRESOUR CONSERV RECY : 2018$$d2020-09-02
000889912 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000889912 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000889912 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889912 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRESOUR CONSERV RECY : 2018$$d2020-09-02
000889912 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-02
000889912 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000889912 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-02$$wger
000889912 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000889912 920__ $$lyes
000889912 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000889912 9801_ $$aFullTexts
000889912 980__ $$ajournal
000889912 980__ $$aVDB
000889912 980__ $$aUNRESTRICTED
000889912 980__ $$aI:(DE-Juel1)IEK-10-20170217
000889912 981__ $$aI:(DE-Juel1)ICE-1-20170217