000889913 001__ 889913
000889913 005__ 20240712112907.0
000889913 0247_ $$2doi$$a10.1002/cite.202000112
000889913 0247_ $$2ISSN$$a0009-286X
000889913 0247_ $$2ISSN$$a1522-2640
000889913 0247_ $$2Handle$$a2128/26858
000889913 0247_ $$2altmetric$$aaltmetric:89801409
000889913 0247_ $$2WOS$$aWOS:000567695400001
000889913 037__ $$aFZJ-2021-00521
000889913 082__ $$a660
000889913 1001_ $$0P:(DE-HGF)0$$aGertig, Christoph$$b0
000889913 245__ $$aRx‐COSMO‐CAMPD: Enhancing Reactions by Integrated Computer‐Aided Design of Solvents and Processes based on Quantum Chemistry
000889913 260__ $$aWeinheim$$bWiley-VCH Verl.$$c2020
000889913 3367_ $$2DRIVER$$aarticle
000889913 3367_ $$2DataCite$$aOutput Types/Journal article
000889913 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611219518_17161
000889913 3367_ $$2BibTeX$$aARTICLE
000889913 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889913 3367_ $$00$$2EndNote$$aJournal Article
000889913 520__ $$aSolvents strongly affect reaction‐based chemical processes. Process design, therefore, needs to integrate solvent design. For this purpose, the integrated computer‐aided molecular and process design (CAMPD) method Rx‐COSMO‐CAMPD is proposed. It employs a hybrid optimization scheme combining a genetic algorithm to explore the molecular design space with gradient‐based optimization of the process. To overcome limitations of molecular design based on group‐contribution methods, reaction kinetics and thermodynamic properties are predicted using advanced quantum‐chemical methods. Rx‐COSMO‐CAMPD is demonstrated in a case study of a carbamate‐cleavage process where promising solvents are designed efficiently. The results show that the integrated solvent and process design with Rx‐COSMO‐CAMPD outperforms computer‐aided molecular design without process optimization in the identification of solvents that enable optimal process performance.
000889913 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000889913 588__ $$aDataset connected to CrossRef
000889913 7001_ $$0P:(DE-HGF)0$$aFleitmann, Lorenz$$b1
000889913 7001_ $$0P:(DE-HGF)0$$aSchilling, Johannes$$b2
000889913 7001_ $$0P:(DE-HGF)0$$aLeonhard, Kai$$b3
000889913 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b4$$eCorresponding author$$ufzj
000889913 773__ $$0PERI:(DE-600)2035041-7$$a10.1002/cite.202000112$$gVol. 92, no. 10, p. 1489 - 1500$$n10$$p1489 - 1500$$tChemie - Ingenieur - Technik$$v92$$x1522-2640$$y2020
000889913 8564_ $$uhttps://juser.fz-juelich.de/record/889913/files/cite.202000112.pdf$$yOpenAccess
000889913 909CO $$ooai:juser.fz-juelich.de:889913$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889913 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000889913 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000889913 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000889913 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000889913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b4$$kFZJ
000889913 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b4$$kRWTH
000889913 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zürich$$b4
000889913 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000889913 9141_ $$y2020
000889913 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-08
000889913 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-08
000889913 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-08
000889913 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-08
000889913 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000889913 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM-ING-TECH : 2018$$d2020-09-08
000889913 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-08$$wger
000889913 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-08
000889913 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-08
000889913 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-08
000889913 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889913 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-08
000889913 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-08
000889913 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-08$$wger
000889913 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-08
000889913 920__ $$lyes
000889913 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000889913 9801_ $$aFullTexts
000889913 980__ $$ajournal
000889913 980__ $$aVDB
000889913 980__ $$aUNRESTRICTED
000889913 980__ $$aI:(DE-Juel1)IEK-10-20170217
000889913 981__ $$aI:(DE-Juel1)ICE-1-20170217