001     889913
005     20240712112907.0
024 7 _ |a 10.1002/cite.202000112
|2 doi
024 7 _ |a 0009-286X
|2 ISSN
024 7 _ |a 1522-2640
|2 ISSN
024 7 _ |a 2128/26858
|2 Handle
024 7 _ |a altmetric:89801409
|2 altmetric
024 7 _ |a WOS:000567695400001
|2 WOS
037 _ _ |a FZJ-2021-00521
082 _ _ |a 660
100 1 _ |a Gertig, Christoph
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Rx‐COSMO‐CAMPD: Enhancing Reactions by Integrated Computer‐Aided Design of Solvents and Processes based on Quantum Chemistry
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH Verl.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611219518_17161
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solvents strongly affect reaction‐based chemical processes. Process design, therefore, needs to integrate solvent design. For this purpose, the integrated computer‐aided molecular and process design (CAMPD) method Rx‐COSMO‐CAMPD is proposed. It employs a hybrid optimization scheme combining a genetic algorithm to explore the molecular design space with gradient‐based optimization of the process. To overcome limitations of molecular design based on group‐contribution methods, reaction kinetics and thermodynamic properties are predicted using advanced quantum‐chemical methods. Rx‐COSMO‐CAMPD is demonstrated in a case study of a carbamate‐cleavage process where promising solvents are designed efficiently. The results show that the integrated solvent and process design with Rx‐COSMO‐CAMPD outperforms computer‐aided molecular design without process optimization in the identification of solvents that enable optimal process performance.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fleitmann, Lorenz
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schilling, Johannes
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Leonhard, Kai
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/cite.202000112
|g Vol. 92, no. 10, p. 1489 - 1500
|0 PERI:(DE-600)2035041-7
|n 10
|p 1489 - 1500
|t Chemie - Ingenieur - Technik
|v 92
|y 2020
|x 1522-2640
856 4 _ |u https://juser.fz-juelich.de/record/889913/files/cite.202000112.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889913
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172023
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)172023
910 1 _ |a ETH Zürich
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)172023
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-08
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM-ING-TECH : 2018
|d 2020-09-08
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-09-08
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-08
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-08
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-08
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-08
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21