000889914 001__ 889914
000889914 005__ 20240712112908.0
000889914 0247_ $$2doi$$a10.1039/D0SE00190B
000889914 0247_ $$2Handle$$a2128/26859
000889914 0247_ $$2altmetric$$aaltmetric:81323798
000889914 0247_ $$2WOS$$aWOS:000563991800048
000889914 037__ $$aFZJ-2021-00522
000889914 082__ $$a660
000889914 1001_ $$0P:(DE-HGF)0$$aOstovari, Hesam$$b0
000889914 245__ $$aRock ‘n’ use of CO 2 : carbon footprint of carbon capture and utilization by mineralization
000889914 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2020
000889914 3367_ $$2DRIVER$$aarticle
000889914 3367_ $$2DataCite$$aOutput Types/Journal article
000889914 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611221420_26616
000889914 3367_ $$2BibTeX$$aARTICLE
000889914 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889914 3367_ $$00$$2EndNote$$aJournal Article
000889914 520__ $$aA recent approach to reduce the carbon footprint of industries with process-inherent CO2 emissions is CO2 mineralization. Mineralization stores CO2 by converting it into a thermodynamically stable solid. Beyond storing CO2, the products of CO2 mineralization can potentially substitute conventional products in several industries. Substituting conventional production increases both the economic and the environmental potential of carbon capture and utilization (CCU) by mineralization. The promising potential of CO2 mineralization is, however, challenged by the high energy demand required to overcome the slow reaction kinetics. To provide a sound assessment of the climate impacts of CCU by mineralization, we determine the carbon footprint of CCU by mineralization based on life cycle assessment. For this purpose, we analyze 7 pathways proposed in literature: 5 direct and 2 indirect mineralization pathways, considering serpentine, olivine, and steel slag as feedstock. The mineralization products are employed to partially substitute cement in blended cement. Our results show that all considered CCU technologies for mineralization could reduce climate impacts over the entire life cycle based on the current state-of-the-art and today's energy mix. Reductions range from 0.44 to 1.17 ton CO2e per ton CO2 stored. To estimate an upper bound on the potential of CCU by mineralization, we consider an ideal-mineralization scenario that neglects all process inefficiencies and utilizes the entire product. For this ideal mineralization, mineralization of 1 ton CO2 could even avoid up to 3.2 times more greenhouse gas emissions than only storing CO2. For all mineralization pathways, the carbon footprint is mainly reduced due to the permanent storage of CO2 and the credit for substituting conventional products. Thus, developing suitable products is critical to realize the potential benefits in practice. Then, carbon capture and utilization by mineralization could provide a promising route for climate change mitigation.
000889914 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000889914 588__ $$aDataset connected to CrossRef
000889914 7001_ $$0P:(DE-HGF)0$$aSternberg, André$$b1
000889914 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b2$$eCorresponding author$$ufzj
000889914 773__ $$0PERI:(DE-600)2882651-6$$a10.1039/D0SE00190B$$gVol. 4, no. 9, p. 4482 - 4496$$n9$$p4482 - 4496$$tSustainable energy & fuels$$v4$$x2398-4902$$y2020
000889914 8564_ $$uhttps://juser.fz-juelich.de/record/889914/files/d0se00190b.pdf$$yOpenAccess
000889914 909CO $$ooai:juser.fz-juelich.de:889914$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889914 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000889914 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000889914 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b2$$kFZJ
000889914 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b2$$kRWTH
000889914 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000889914 9141_ $$y2020
000889914 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000889914 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-12
000889914 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-12
000889914 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-12
000889914 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUSTAIN ENERG FUELS : 2018$$d2020-09-12
000889914 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-12
000889914 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-12
000889914 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-12
000889914 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889914 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-12
000889914 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-12$$wger
000889914 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-12
000889914 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-12
000889914 920__ $$lyes
000889914 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000889914 9801_ $$aFullTexts
000889914 980__ $$ajournal
000889914 980__ $$aVDB
000889914 980__ $$aUNRESTRICTED
000889914 980__ $$aI:(DE-Juel1)IEK-10-20170217
000889914 981__ $$aI:(DE-Juel1)ICE-1-20170217