000889915 001__ 889915
000889915 005__ 20240712112855.0
000889915 0247_ $$2doi$$a10.26434/chemrxiv.12833747.v1
000889915 0247_ $$2Handle$$a2128/26852
000889915 037__ $$aFZJ-2021-00523
000889915 1001_ $$0P:(DE-HGF)0$$aDeutz, Sarah$$b0
000889915 245__ $$aHow (Carbon) Negative Is Direct Air Capture? Life Cycle Assessment of an Industrial Temperature-Vacuum Swing Adsorption Process
000889915 260__ $$c2020
000889915 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1611213577_15566
000889915 3367_ $$2ORCID$$aWORKING_PAPER
000889915 3367_ $$028$$2EndNote$$aElectronic Article
000889915 3367_ $$2DRIVER$$apreprint
000889915 3367_ $$2BibTeX$$aARTICLE
000889915 3367_ $$2DataCite$$aOutput Types/Working Paper
000889915 520__ $$aCurrent climate targets require negative emissions. Direct air capture (DAC) is a promising negative emission technology, but energy and materials demands lead to trade-offs with indirect emissions and other environmental impacts. Here, we show by Life Cycle Assessment (LCA) that the first commercial DAC plants in Hinwil and Hellisheiði can achieve negative emissions already today with carbon capture efficiencies of 85.4 % and 93.1 %. Climate benefits of DAC, however, depend strongly on the energy source. When using low-carbon energy, as in Hellisheiði, adsorbent choice and plant construction become important with up to 45 and 15 gCO<sub>2e</sub> per kg CO<sub>2</sub> captured, respectively. Large-scale deployment of DAC for<br>1 % of the global annual CO<sub>2</sub> emissions would not be limited by material and energy availability. Other environmental impacts would increase by less than 0.057 %. Energy source and efficiency are essential for DAC to enable both negative emissions and low-carbon fuels.<br>
000889915 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000889915 588__ $$aDataset connected to CrossRef
000889915 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b1$$eCorresponding author$$ufzj
000889915 773__ $$a10.26434/chemrxiv.12833747.v1
000889915 8564_ $$uhttps://juser.fz-juelich.de/record/889915/files/How__Carbon__Negative_Is_Direct_Air_Capture__Life_Cycle_Assessment_of_an_Industrial_Temperature-Vacuum_Swing_Adsorption__v1.pdf$$yOpenAccess
000889915 909CO $$ooai:juser.fz-juelich.de:889915$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889915 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000889915 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b1$$kFZJ
000889915 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b1$$kRWTH
000889915 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zürich$$b1
000889915 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000889915 9141_ $$y2020
000889915 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889915 920__ $$lyes
000889915 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000889915 9801_ $$aFullTexts
000889915 980__ $$apreprint
000889915 980__ $$aVDB
000889915 980__ $$aUNRESTRICTED
000889915 980__ $$aI:(DE-Juel1)IEK-10-20170217
000889915 981__ $$aI:(DE-Juel1)ICE-1-20170217