001     889915
005     20240712112855.0
024 7 _ |a 10.26434/chemrxiv.12833747.v1
|2 doi
024 7 _ |a 2128/26852
|2 Handle
037 _ _ |a FZJ-2021-00523
100 1 _ |a Deutz, Sarah
|0 P:(DE-HGF)0
|b 0
245 _ _ |a How (Carbon) Negative Is Direct Air Capture? Life Cycle Assessment of an Industrial Temperature-Vacuum Swing Adsorption Process
260 _ _ |c 2020
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1611213577_15566
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Current climate targets require negative emissions. Direct air capture (DAC) is a promising negative emission technology, but energy and materials demands lead to trade-offs with indirect emissions and other environmental impacts. Here, we show by Life Cycle Assessment (LCA) that the first commercial DAC plants in Hinwil and Hellisheiði can achieve negative emissions already today with carbon capture efficiencies of 85.4 % and 93.1 %. Climate benefits of DAC, however, depend strongly on the energy source. When using low-carbon energy, as in Hellisheiði, adsorbent choice and plant construction become important with up to 45 and 15 gCO2e per kg CO2 captured, respectively. Large-scale deployment of DAC for
1 % of the global annual CO2 emissions would not be limited by material and energy availability. Other environmental impacts would increase by less than 0.057 %. Energy source and efficiency are essential for DAC to enable both negative emissions and low-carbon fuels.

536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 1
|e Corresponding author
|u fzj
773 _ _ |a 10.26434/chemrxiv.12833747.v1
856 4 _ |u https://juser.fz-juelich.de/record/889915/files/How__Carbon__Negative_Is_Direct_Air_Capture__Life_Cycle_Assessment_of_an_Industrial_Temperature-Vacuum_Swing_Adsorption__v1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889915
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172023
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)172023
910 1 _ |a ETH Zürich
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)172023
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21