000889918 001__ 889918
000889918 005__ 20240712112909.0
000889918 0247_ $$2doi$$a10.1002/ente.201901130
000889918 0247_ $$2ISSN$$a2194-4288
000889918 0247_ $$2ISSN$$a2194-4296
000889918 0247_ $$2Handle$$a2128/26862
000889918 0247_ $$2altmetric$$aaltmetric:76028804
000889918 0247_ $$2WOS$$aWOS:000512821400001
000889918 037__ $$aFZJ-2021-00526
000889918 082__ $$a620
000889918 1001_ $$0P:(DE-HGF)0$$aGraf, Stefan$$b0
000889918 245__ $$aValidated Performance Prediction of Adsorption Chillers: Bridging the Gap from Gram‐Scale Experiments to Full‐Scale Chillers
000889918 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2020
000889918 3367_ $$2DRIVER$$aarticle
000889918 3367_ $$2DataCite$$aOutput Types/Journal article
000889918 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611223512_26616
000889918 3367_ $$2BibTeX$$aARTICLE
000889918 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889918 3367_ $$00$$2EndNote$$aJournal Article
000889918 520__ $$aAdsorption chillers provide sustainable cooling from waste or solar heat. However, adsorption chillers currently show limited performance. To increase the performance, new working pairs and adsorber geometries are constantly proposed. Evaluating the performance of new working pairs and adsorber geometries requires time and large amounts of the material. To reduce time and material needs, a method is presented to reliably predict the heat flows in the adsorber, specific cooling power (SCP), and coefficient of performance (COP) in an adsorption chiller from only 1 g of adsorbent material. For this purpose, the small‐scale Infrared‐Large‐Temperature‐Jump experiment is combined with a full‐scale adsorption chiller model. The adsorption chiller model allows determining time‐resolved heat flows, SCP, and COP. The prediction results are compared with a full‐scale experiment of an adsorption chiller. For various process conditions, the prediction is highly reliable with average deviations of 18.5% for the heat flows, 1.4% for the SCP, and 7.0% for the COP compared with the experiment. The presented method allows a comprehensive and reliable evaluation of new working pairs and adsorber designs from only small amounts of the adsorbent material, thus guiding material improvements at an early stage of development.
000889918 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000889918 588__ $$aDataset connected to CrossRef
000889918 7001_ $$0P:(DE-HGF)0$$aEibel, Sebastian$$b1
000889918 7001_ $$0P:(DE-HGF)0$$aLanzerath, Franz$$b2
000889918 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b3$$eCorresponding author$$ufzj
000889918 773__ $$0PERI:(DE-600)2700412-0$$a10.1002/ente.201901130$$gVol. 8, no. 5, p. 1901130 -$$n5$$p1901130 -$$tEnergy technology$$v8$$x2194-4296$$y2020
000889918 8564_ $$uhttps://juser.fz-juelich.de/record/889918/files/ente.201901130.pdf$$yOpenAccess
000889918 909CO $$ooai:juser.fz-juelich.de:889918$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889918 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000889918 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000889918 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000889918 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b3$$kFZJ
000889918 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b3$$kRWTH
000889918 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000889918 9141_ $$y2020
000889918 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-26
000889918 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-26
000889918 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-26
000889918 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY TECHNOL-GER : 2018$$d2020-08-26
000889918 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000889918 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-26$$wger
000889918 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-26
000889918 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-26
000889918 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-26
000889918 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889918 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-26
000889918 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-26
000889918 920__ $$lyes
000889918 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000889918 9801_ $$aFullTexts
000889918 980__ $$ajournal
000889918 980__ $$aVDB
000889918 980__ $$aUNRESTRICTED
000889918 980__ $$aI:(DE-Juel1)IEK-10-20170217
000889918 981__ $$aI:(DE-Juel1)ICE-1-20170217