001     889918
005     20240712112909.0
024 7 _ |a 10.1002/ente.201901130
|2 doi
024 7 _ |a 2194-4288
|2 ISSN
024 7 _ |a 2194-4296
|2 ISSN
024 7 _ |a 2128/26862
|2 Handle
024 7 _ |a altmetric:76028804
|2 altmetric
024 7 _ |a WOS:000512821400001
|2 WOS
037 _ _ |a FZJ-2021-00526
082 _ _ |a 620
100 1 _ |a Graf, Stefan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Validated Performance Prediction of Adsorption Chillers: Bridging the Gap from Gram‐Scale Experiments to Full‐Scale Chillers
260 _ _ |a Weinheim [u.a.]
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611223512_26616
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Adsorption chillers provide sustainable cooling from waste or solar heat. However, adsorption chillers currently show limited performance. To increase the performance, new working pairs and adsorber geometries are constantly proposed. Evaluating the performance of new working pairs and adsorber geometries requires time and large amounts of the material. To reduce time and material needs, a method is presented to reliably predict the heat flows in the adsorber, specific cooling power (SCP), and coefficient of performance (COP) in an adsorption chiller from only 1 g of adsorbent material. For this purpose, the small‐scale Infrared‐Large‐Temperature‐Jump experiment is combined with a full‐scale adsorption chiller model. The adsorption chiller model allows determining time‐resolved heat flows, SCP, and COP. The prediction results are compared with a full‐scale experiment of an adsorption chiller. For various process conditions, the prediction is highly reliable with average deviations of 18.5% for the heat flows, 1.4% for the SCP, and 7.0% for the COP compared with the experiment. The presented method allows a comprehensive and reliable evaluation of new working pairs and adsorber designs from only small amounts of the adsorbent material, thus guiding material improvements at an early stage of development.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Eibel, Sebastian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lanzerath, Franz
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/ente.201901130
|g Vol. 8, no. 5, p. 1901130 -
|0 PERI:(DE-600)2700412-0
|n 5
|p 1901130 -
|t Energy technology
|v 8
|y 2020
|x 2194-4296
856 4 _ |u https://juser.fz-juelich.de/record/889918/files/ente.201901130.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889918
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172023
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)172023
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY TECHNOL-GER : 2018
|d 2020-08-26
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-26
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21