Home > Publications database > Computer-aided molecular and processes design based on quantum chemistry: current status and future prospects > print |
001 | 889920 | ||
005 | 20240712112905.0 | ||
024 | 7 | _ | |a 10.1016/j.coche.2019.11.007 |2 doi |
024 | 7 | _ | |a 2128/26882 |2 Handle |
024 | 7 | _ | |a altmetric:74245203 |2 altmetric |
024 | 7 | _ | |a WOS:000544589400012 |2 WOS |
037 | _ | _ | |a FZJ-2021-00528 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Gertig, Christoph |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Computer-aided molecular and processes design based on quantum chemistry: current status and future prospects |
260 | _ | _ | |a Amsterdam [u.a.] |c 2020 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1611244420_3575 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Computer-Aided Molecular Design (CAMD) enables the automated exploration of chemical space and thus offers great possibilities for efficient design of chemical products. The key to reliable CAMD is a sound prediction of the properties of desired products, where quantum chemistry-based (quantum chemical, QC) prediction methods offer unique opportunities. In this article, we discuss CAMD methods based on QC and highlight two important fields of application: the design of solvents and of molecular catalysts. Screening of separation solvents based on physical property targets can be regarded as established by now. However, the integration of molecular design and process design remains an important challenge. For the design of reactive systems, transition state theory provides a sound basis. However, efficient CAMD methods and tools based on quantum chemistry are still in their infancy. Recent results and the unexplored opportunities of quantum chemistry make the development of QC-based CAMD methods a promising field of research. |
536 | _ | _ | |a 899 - ohne Topic (POF3-899) |0 G:(DE-HGF)POF3-899 |c POF3-899 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Leonhard, Kai |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Bardow, André |0 P:(DE-Juel1)172023 |b 2 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1016/j.coche.2019.11.007 |g Vol. 27, p. 89 - 97 |0 PERI:(DE-600)2642057-0 |p 89 - 97 |t Current opinion in chemical engineering |v 27 |y 2020 |x 2211-3398 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/889920/files/1-s2.0-S2211339819300619-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:889920 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)172023 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-Juel1)172023 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF3-890 |0 G:(DE-HGF)POF3-899 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-09-12 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CURR OPIN CHEM ENG : 2018 |d 2020-09-12 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-12 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-09-12 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-12 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-10-20170217 |k IEK-10 |l Modellierung von Energiesystemen |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-10-20170217 |
981 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|