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ScienceDirect
Computer-Aided Molecular Design (CAMD) enables the

automated exploration of chemical space and thus offers great

possibilities for efficient design of chemical products. The key

to reliable CAMD is a sound prediction of the properties of

desired products, where quantum chemistry-based (quantum

chemical, QC) prediction methods offer unique opportunities.

In this article, we discuss CAMD methods based on QC and

highlight two important fields of application: the design of

solvents and of molecular catalysts. Screening of separation

solvents based on physical property targets can be regarded

as established by now. However, the integration of molecular

design and process design remains an important challenge.

For the design of reactive systems, transition state theory

provides a sound basis. However, efficient CAMD methods and

tools based on quantum chemistry are still in their infancy.

Recent results and the unexplored opportunities of quantum

chemistry make the development of QC-based CAMD

methods a promising field of research.
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Bardow, André (andre.bardow@ltt.rwth-aachen.de)

Current Opinion in Chemical Engineering 2019, 27:89–97

This review comes from a themed issue on Frontiers of chemical

engineering

Edited by Rafiqul Gani and Lei Zhang

For a complete overview see the Issue and the Editorial

Available online 14th January 2020

https://doi.org/10.1016/j.coche.2019.11.007

2211-3398/ã 2019 The Author(s). Published by Elsevier Ltd. This is an

open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

Introduction
The world is constantly demanding more chemical

products [1]. At the same time, innovative chemical

products and processes should be developed fast and

efficiently due to global competition [2]. However,

searching new molecules that best meet product require-

ments can be very tedious due to the vast chemical design

space [3] that is estimated to contain up to 10200 organic

molecules [4]. To explore large molecular search spaces,
www.sciencedirect.com 
computer-aided molecular design (CAMD) [5�] methods

have been developed. CAMD methods have been

successfully applied in chemical product design [6�] of,

for example, solvents, ionic liquids, catalysts, heat

exchange fluids, and polymers (see Papadopoulos et al.
for a comprehensive review [7��]).

Computer-aided molecular design requires three building

blocks (Figure 1):

1 A method to explore chemical space is required to

obtain the structure of molecules considered as

chemical products. For example, candidate molecules

can be generated and optimized based on a set of

molecule fragments as building blocks. Strictly, the

term ‘molecular design’ refers to the exploration of a

molecular design space where not only known, but also

promising new molecules are identified [5�]. While

such design methods have a larger scope, we also

consider the selection of candidates from databases

of known molecules (screening) in this review.

2 A reliable method for property prediction is key to

evaluating the performance of candidate molecules.

Property prediction in CAMD is often based on group

contribution (GC) [7��] methods like UNIFAC. While

group contribution methods are straightforward to

implement and computationally efficient, they also

face significant limitations [8�,9]. First, GC methods

assume that the properties of a molecule can be

described based on its functional groups, neglecting

the 3-dimensional structure. Second, parameters for

every functional group considered by a GC method

have to be fitted to extensive experimental data. This

requirement practically limits the accessible molecular

design space. Third, several parameter sets or GC

methods are often required to predict different

properties. Quantum chemistry-based (quantum

chemical, QC) methods overcome the discussed

limitations. Nevertheless, the use of QC in CAMD

has been limited for a long time because of the compu-

tational requirements. However, both the available

computational power and computationally efficient

QC methods have improved considerably during the

past decade. Thus, CAMD based on QC is becoming

increasingly important and is the focus of this article.

Some QC-based property prediction methods are

routinely used in CAMD already today, for example,

the Conductor-like Screening Model for Realistic

Solvation (COSMO-RS) [10].
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Overview of building blocks required to set up CAMD.
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Scheme of molecular design as inverse problem and screening as

direct problem.
3 Considering the predicted properties of candidate

molecules, their expected product performance must

be evaluated. Many CAMD methods evaluate candi-

date molecules using simple performance indicators

derived from physical properties. However, such

performance indicators may not capture tradeoffs

required for optimal performance [11]. Therefore,

molecules should be assessed based on their predicted

performance in the intended application. For example,

the performance of designed solvent molecules should

ideally be evaluated by optimizing the process that

uses the solvents.

Recent developments for the three building blocks of

CAMD using QC are discussed before we highlight

CAMD applications in two important areas: the design

of solvents and molecular catalysts. With this opinion

paper, we aim to clarify the current research frontier. In

particular, we show that screening of databases containing

known molecules to match thermodynamic equilibrium

property targets can be regarded as established method

supported by suitable software. In addition, prediction of

solvent effects on reaction kinetics has reached a high

level of maturity with transition state theory as method of

choice. Further development is required for the actual

design of new molecules and for integrating CAMD with

process design as discussed in the following.

Computer-aided molecular design
Computer-aided molecular design aims at finding the

best molecule for a certain application [5�]. This

aim corresponds to the solution of an inverse problem

(Figure 2): performance measures are specified as design

objectives and property prediction methods are used to

design the molecular structure that shows the best

performance. Thus, CAMD is sometimes referred to as

‘inverse property prediction’ or ‘inverse performance

prediction’.
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The inverse problem can be formulated as mathematical

optimization problem [5�,12] as proposed by Gani [13]:

minx;y f x; yð Þ performance

s:t: h x; yð Þ � 0 inð Þequality constraints ) properties and application

g yð Þ � 0 inð Þequality constraints ) molecular structure

ð1Þ

Here, f ðx; yÞ is a design objective used to measure

performance depending on continuous variables x
(e.g. process conditions) and the molecular structure y
of the designed molecule. The equality constraints in

h x; yð Þ represent equations for property prediction and for

the intended application (e.g. process models). Inequality

constraints in hðx; yÞ restrict, for example, molecular and

thermodynamic properties. Equality and inequality con-

straints gðyÞ ensure chemical feasibility of the designed

molecular structures and are often also used to limit the

explored design space, for example, to structures with
www.sciencedirect.com
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certain numbers of atoms or structures containing specific

combinations of functional groups. While the constraints

gðyÞ are usually linear, the constraints hðx; yÞ generally

include nonlinear equations.

CAMD based on group contribution methods has the

advantage that analytical derivatives can usually

be calculated for the objective function f ðx; yÞ and the

constraints hðx; yÞ and g yð Þ with respect to the molecular

structure y (represented by the set of functional

groups comprising the molecule). This is not possible

for QC-based CAMD due to the inherent discrete nature

of atoms in a molecule. Thus, optimization algorithms

used to solve the design Problem (1) have to circumvent

the need for these analytical derivatives. Besides optimi-

zation, enumerative algorithms are often used in CAMD

to test all candidates from a database (screening) or a

molecular design space (generate-and-test). Enumerative

algorithms provide good solutions but have to test all

candidates in the database/design space. An excellent

review of solution approaches for CAMD is given by

Papadopoulos et al. [7��].

Quantum chemical methods for property
prediction in CAMD
There are different groups of QC methods used to predict

properties [14,15]:

1 Methods like Hartree-Fock (HF) are based on the

numerical solution of the Schrödinger equation (wave

function methods) [14]. Modern post-HF methods

offer the highest accuracy at the highest computational

cost [16]. For small molecules with 1 or 2 non-hydrogen

atoms, Zheng et al. [16] found mean unsigned errors in

calculated energies of about 2 kJ/mol with the coupled

cluster method CCSD(T) and large basis sets, often

called the ‘gold standard’ of quantum chemistry [17].

2 Quantum chemical methods based on density functional

theory (DFT) compute properties from the distribution

of electron density [18]. Compared to post-HF methods,

DFT methods typically offer higher computational

efficiency, but lower accuracy [19]. Zheng et al. [16]

found mean unsigned errors of about 8–24 kJ/mol for

typical DFT methods like B3LYP but at 103 to 104 lower

computational cost than for CCSD(T).

3 Semi-empirical methods approximate wave function

methods and density functional tight binding methods

(DFTB) approximate DFT [20]. Empirical approxima-

tions significantly reduce accuracy, but greatly enhance

computational efficiency. Unsigned errors take values

of up to 120 kJ/mol for semi-empirical methods while

computational cost was found lower by factors around

108 compared to CCSD(T) [16].

Importantly, the computational effort required for the

different methods scales differently with the size of the
www.sciencedirect.com 
studied molecules such that the relative computational

effort depends on molecular size. While methods with

low computational requirements are not accurate over a

broad range of systems and properties, they may still

perform well in specific cases with a much higher accuracy

than given above. However, appropriate validation data

are usually required to identify a suitable low-cost

method for a given system and such data are often

unavailable. Only high-level methods like CCSD(T)

are suited to compute properties with high accuracy for

a broad range of systems.

QC methods predict molecular properties like geometry and

energy and vibrational analyses determine vibrational states.

However, CAMD requires notonly molecular propertiesbut

also thermodynamic and kinetic quantities. These

quantities arise in systems with many molecules and are

determined by thermochemical calculations based on statis-

tical thermodynamics and the results from QC [21,22]. QC

calculations performed in vacuum consider no intermolecu-

lar interactions, which results in an ideal gas treatment of

thermodynamic properties. Many applications in chemical

product design need properties of liquids. Continuum

solvation models (CSM) allow for the calculation of the

required solvation properties considering the liquid

environment of a molecule as a continuum. Important

examples of CSM-based prediction methods are SMD

[23], COSMO-RS [10] and COSMO-SAC [24].

Often, desired properties are difficult to calculate based on

physical relationships but still correlate well with molecular

structure and descriptors from QC. Such properties can be

predicted based on QC by quantitative structure-property

relationships (QSPR) [25�]. A general procedure has been

established to develop and use QSPR models [25�]: To

develop a QSPR, coefficients are fitted to training data and

subsequently validated using validation data. Afterwards,

the QSPR is used to predict properties based on molecular

descriptors. This procedure also applies to QSPRs with

descriptors from QC.

QSPRs with descriptors from QC have been used to

predict a variety of properties of chemical products

including melting points, boiling points, densities, vapor

pressures, solubilities, surface tensions [25�], reaction

kinetics [26], optical properties [27], lubricity [28] and

the effectiveness of pharmaceuticals [29].

The QC-based prediction methods described above have

been included into CAMD to design chemical products.

In the next sections, we discuss recent CAMD methods

for the design of two important chemical products:

solvents and molecular catalysts.

QC-based CAMD of solvents for separations
CAMD of separation solvents based on QC is commonly

based on performance indicators derived from
Current Opinion in Chemical Engineering 2020, 27:89–97
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thermodynamic properties (Figure 3). Farahipour et al.
[30] design ionic liquids (IL) for CO2 capture using the

absorption-desorption index (ADI) to measure perfor-

mance. The ADI is derived from Henry coefficients

predicted with COSMO-RS to indicate absorption capac-

ity and the ease of desorption at elevated temperatures.

The authors select ten promising ILs by screening a

database with 212 cations and 63 anions. In contrast,

Ahmad et al. [31] use a generate-and-test approach to

design solvents for chemical absorption of CO2. The

enthalpy of chemisorption reactions is predicted using

the DFT method B3LYP and employed as indicator for

the effort required for solvent recovery. Scheffczyk et al.
[32] use a genetic optimization algorithm to design

solvents for extraction processes based on 3D molecule

fragments. Performance indicators like distribution coef-

ficients are derived from activity coefficients predicted

with COSMO-RS and used as performance measure.

To increase the reliability of the results, some authors

include experimental testing of promising candidates as

final step of their design. Yu et al. [33] select ILs for

natural gas dehydration in a COSMO-RS-based database

screening and perform a dehydration experiment to

confirm the performance of the top candidate. Fang

et al. [34] select ILs as solvents for extractive distillation

in a screening using COSMO-SAC and perform experi-

ments to confirm the enhancement of relative volatility.

Song et al. [35] perform a multi-stage screening to find ILs

as extraction solvents, where the first screening step is

based on COSMO-RS and the final screening step

evaluates all remaining candidates by experiments.

Although quantitative agreement between prediction

and experiment cannot always be expected, the

experimental investigations to validate design results

show that QC-based CAMD is able to catch the right

trends and identify promising molecules.
Figure 3

Per for mance

Property 
Pred iction

Molecular 
Structure

Performan ce in dicators 
based  on  ph ysical prope rties

Δ ℎ

Referen ce 31

DFT CO 

30 33 

G
en

er
at

e
&

 T
es

t

Screen ing

34 35 3

Gen 
optim

tio

Activity coeff icien
Hen ry 

coeff icients

Overview of discussed CAMD methods for separation solvent design.

Current Opinion in Chemical Engineering 2020, 27:89–97 
QC-based screening has been widely applied to find

separation solvents, with ILs for absorption processes

as common application [36]. COSMO-RS and

COSMO-SAC are the prominent property prediction

methods (Figure 3). The search for solvents based on

predicted thermodynamic properties is now very time-

efficient since databases with results of QC calculations

are readily available. Screenings evaluate thousands of

candidates in a few hours [37]. The QC-based screening

of separation solvents based on thermodynamic

properties has reached a high level of maturity due to

the availability of established methods (COSMO-RS/

SAC) with software tools and databases.

Going beyond screening of known molecular structures to

design new molecules increases the computational effort,

as QC calculations are required for newly designed

molecules. The whole CAMD procedure may then take

up to several days. Some authors avoid this computational

effort by partly replacing QC with GC methods [38–40].

GC methods considerably speed up the design and

integrate well into efficient integer optimization

methods, but remove some advantages of QC (e.g.

independence of fitted functional groups). Genetic algo-

rithms using molecular fragments have provided the only

route to directly generate novel molecules as input for QC

calculations [32]. More efficient optimization algorithms

for QC-based molecular design are therefore an important

research target.

While most QC-based CAMD methods evaluate solvents

based on performance indicators only (Figure 3),

important tradeoffs may be neglected such that it is

beneficial to evaluate solvents based on their processes

performance. Some authors assess process performance

after the screening/design [41,42]. However, the optimal

solvent may strongly depend on the process conditions
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and vice versa [11]. Therefore, it is increasingly

recognized that the process-based assessment should

be integrated into the CAMD procedure. Scheffczyk

et al. [37] screen solvents for extraction-distillation

processes based on COSMO-RS and evaluate every can-

didate solvent using pinch-based models of distillation

and extraction columns [43]. Energy demand and solvent

loss are minimized. In subsequent work, Scheffczyk et al.
[44�] integrate solvent and process design based on

COSMO-RS. A hybrid optimization scheme is applied

using genetic optimization for the solvent and determin-

istic optimization for process conditions. Again, pinch-

based models are employed for efficient process-based

assessment of every candidate solvent during design.

Liquid-liquid equilibrium (LLE) experiments are

performed confirming the potential of designed solvents.

Assessment on the application level has been shown to

improve design results. However, efficient methods and

software tools for integrated solvent and process design

based on QC are still lacking.

QC-based CAMD of reaction solvents
The design of optimal solvents for reaction-based

processes requires property prediction to quantify the

influence of solvents on reaction equilibrium and

kinetics. QC methods are an excellent choice especially

when it comes to computing reaction kinetics. To predict

solvent-dependent reaction rate constants, two QC-based

approaches have been used in CAMD: QSPR models

where QC is used to obtain descriptors and/or training

data and prediction with conventional transition state

theory (TST) [14]. With TST, reaction rate constants

are calculated from the activation barrier in Gibbs free

energy between the reactants and a transition state.

According to conventional TST, this transition state is

a first-order saddle point on the minimum-energy path

from the reactants to the desired products and can be

identified by a geometry optimization.

Several methods for the design of reaction solvents

employ predicted reaction rate constants as performance

indicator. In pioneering work, Struebing et al. [45�,46]
design solvents based on a set of selected functional

groups. A QSPR model is used with descriptors from

GC methods to obtain reaction rate constants. The

coefficients of the QSPR are fitted to rate constants

predicted by TST. The required activation barriers are

predicted with DFT methods and SMD. The QSPR

model is refined during the CAMD procedure using rate

constants of top solvents from previous optimization steps

predicted with TST. Thereby, the computational effort is

reduced compared to using TST for predicting the rate

constants in all candidate solvents. The prediction is,

however, still partly based on GC methods. Austin

et al. [47] also design solvents based on a set of groups.

They use TST and activation barriers from DFT and

COSMO-RS to calculate rate constants. An additional
www.sciencedirect.com 
parameter is fitted to experimental data to enable quan-

titative prediction. QC calculations are partly replaced by

GC methods, which expedites the design but restricts the

design space to the available groups. Gertig et al. [48]

propose a method for reaction solvent design based on

pure prediction of rate constants. Solvent-independent

contributions to the activation barriers are computed with

post-HF methods and solvent-dependent contributions

with COSMO-RS. The solvent is optimized with a

genetic algorithm based on 3D molecule fragments,

facilitating the QC-based prediction.

As for separationsolvents, performanceevaluationbasedon

performance indicators does not always reflect process

performance and may result in suboptimal solvents. Thus,

a process-based assessment is desirable. Zhou et al. [49�]
evaluate candidates based on the difference in final con-

centrations of desired and undesired products determined

by reactor simulations. A QSPR with COSMO-RS-based

descriptors isfitted to experimental data andused topredict

rate constants. The required input for COSMO-RS is

calculated with a GC method instead of QC. Inaccuracies

in the prediction are taken into account using robust

optimization in the solvent design. The same authors

use their QSPR in another integrated design of solvent

and process with profit calculated using process and cost

models as performance measure [26]. Gertig et al. [50]

extend their solvent design method based on pure

prediction with QC [48] to an integrated design of

solvents and processes. The integrated design problem is

solved employing a hybrid optimization scheme: the

solvent molecular structure is optimized with a genetic

optimization algorithm based on 3D molecule fragments.

The optimal process conditions and process performance

are determined by deterministic process optimizations.

In comparison to CAMD for separation solvents, the design

of reaction solvents is much less developed. However, TST

seems to be established as method of choice to predict

reaction kinetics (Figure 4). The increased computational

cost now also seems manageable such that the first fully

predictive CAMD of reaction solvents based on high-level

QC could recently be demonstrated [48]. Further research

is needed for efficient CAMD methods, and for the

integration with process design.

Towards CAMD of molecular catalysts
CAMD of catalysts is still considered as one of the ‘holy

grails in chemistry’ [51]. However, approaches towards

automated in silico catalyst design are emerging. Here,

we focus on the design of molecular (homogeneous)

catalysts based on QC. For approaches to design

heterogeneous catalysts, the reader is referred to the

recent review of Freeze et al. [52].

Property prediction is now needed to assess catalytic

effects. These effects have been studied at different
Current Opinion in Chemical Engineering 2020, 27:89–97
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Figure 4
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Overview of discussed CAMD methods for reaction solvent design.
levels of abstraction by optimizing a catalytic environ-

ment of reacting molecules. In early work, Tantillo et al.
[53] propose a method called ‘Theozymes’ to study

catalysis by enzymes. In Theozymes, the transition state

is determined for the considered reaction. Subsequently,

functional groups representing the catalyst are placed

around the transition state and the positioning of these

groups is optimized to minimize the activation barrier.

Besides the original work of Tantillo et al., there are more

recent studies based on Theozymes [54]. Dittner and

Hartke [55] study catalytic effects by optimizing an

abstract catalytic environment around transition states.

This approach is excellent to study catalytic effects but

does not design actual catalyst molecules.

The methods discussed so far provide valuable insights

into catalytic effects but different methods are required to

design the molecular structure of catalyst molecules.

Chang et al. [56] design Ni complexes to catalyze the

CO/CO2 conversion. Selected groups of the catalyst

molecules are optimized to lower the activation energy

of the rate-limiting reaction step. This activation

energy is computed using semi-empirical tight binding

linear combination of atomic potentials (TB-LCAP). In a

refinement step after the design, the most promising

catalyst candidates are further evaluated with DFT.

As for solvents, promising candidate catalysts may be

missed if the optimization of catalyst and process is

completely separated. Thus, we recently proposed a

method for the integrated design of molecular catalysts

and processes. Optimal catalyst molecules are designed

based on a library of 3D molecule fragments. For process-

based assessment, the process performance of every

candidate catalyst is determined by individual process

optimizations. The reaction kinetics achieved with
Current Opinion in Chemical Engineering 2020, 27:89–97 
the designed catalysts are calculated with transition

state theory. The activation barriers as well as other

required thermodynamic quantities are predicted with

DFT, post-HF methods and COSMO-RS. The integra-

tion of catalyst and process design enables the direct

design of catalyst structures catching all relevant tradeoffs

to find optimal solutions.

Further developments are desirable towards reliable and

broadly applicable design of molecular catalysts based on

process performance. A major challenge for catalyst design is

the search for the transition states required to use TST.

Usually, QC methods need a good initial guess of the

transition state geometry. Thus, current automated catalyst

design methods are either limited to relatively small molec-

ular design spaces or study an abstract catalytic environment

without designing real catalyst structures. Methods that

automate the generation of reaction networks and transition

state geometries have already been developed [57–61] and

work in specific cases. However, more generally applicable

methods are needed for catalyst design.

Conclusion and outlook
In this opinion paper, we discuss CAMD methods based

on QC. QC methods are not limited to fitted functional

groups and can predict a broad range of properties

independent of the availability of experimental data.

Thus, QC methods are suited to explore vast molecular

design spaces. Increasing computational power as well as

the development of accurate and efficient QC methods

has led to an increasing number of QC-based CAMD

methods in recent years and we expect this trend to

continue in the near future.

Two important applications of CAMD in chemical product

design are highlighted: the design of solvents as well as the
www.sciencedirect.com
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design of molecular catalysts. The design of separation

solvents has been studied extensively leading to a large

number of publications during the past decade, especially

in the field of ILs for gas absorption. Large-scale screenings

of thousands of known solvents can now be regarded as

established due to available methods and software based on

COSMO-RS/SAC. These screenings, however, usually

employ thermodynamic properties as performance indica-

tor. Integrating molecular design with process-based

assessment of solvents has been demonstrated but efficient

and standardized methods and tools are still missing.

Compared to the design of separation solvents, reaction

solvent design has been studied less extensively. Transi-

tion state theory seems to provide the method of choice to

predict reaction kinetics. Only few methods integrate the

design of reaction solvents with process design. However,

we consider the integration of solvent and process design

as important future direction for both separation and

reaction solvents. For GC-based CAMD, such integrated

design tools are becoming available [62,63].

Compared to solvent design, CAMD of molecular

catalysts is a quite unexplored field where we expect

promising developments in the near future. There is still

a major research need for reliable methods for automatic

identification of transition states.

In our view, chemical engineers are only beginning to

explore the power of quantum chemistry to design

molecules. The spectrum of possible applications reaches

much further than classical reaction and separation

processes discussed here. Recently, QC-based prediction

of environmental properties [64,65] has been demon-

strated. Integration of these methods into CAMD would

allow the design of environmentally friendly molecules.

This paper will hopefully invite practitioners to employ

available methods and researchers to push the frontier for

CAMD using quantum chemistry.
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