000889921 001__ 889921
000889921 005__ 20240712112910.0
000889921 0247_ $$2arXiv$$aarXiv:2002.03059
000889921 0247_ $$2Handle$$a2128/26884
000889921 0247_ $$2altmetric$$aaltmetric:75757619
000889921 037__ $$aFZJ-2021-00529
000889921 1001_ $$0P:(DE-HGF)0$$aTeichgraeber, Holger$$b0
000889921 245__ $$aExtreme events in time series aggregation: A case study for optimal residential energy supply systems
000889921 260__ $$c2020
000889921 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1611245307_26616
000889921 3367_ $$2ORCID$$aWORKING_PAPER
000889921 3367_ $$028$$2EndNote$$aElectronic Article
000889921 3367_ $$2DRIVER$$apreprint
000889921 3367_ $$2BibTeX$$aARTICLE
000889921 3367_ $$2DataCite$$aOutput Types/Working Paper
000889921 520__ $$aTo account for volatile renewable energy supply, energy systems optimization problems require high temporal resolution. Many models use time-series clustering to find representative periods to reduce the amount of time-series input data and make the optimization problem computationally tractable. However, clustering methods remove peaks and other extreme events, which are important to achieve robust system designs. We present a general decision framework to include extreme events in a set of representative periods. We introduce a method to find extreme periods based on the slack variables of the optimization problem itself. Our method is evaluated and benchmarked with other extreme period inclusion methods from the literature for a design and operations optimization problem: a residential energy supply system. Our method ensures feasibility over the full input data of the residential energy supply system although the design optimization is performed on the reduced data set. We show that using extreme periods as part of representative periods improves the accuracy of the optimization results by 3% to more than 75% depending on system constraints compared to results with clustering only, and thus reduces system cost and enhances system reliability.
000889921 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000889921 588__ $$aDataset connected to arXivarXiv
000889921 7001_ $$0P:(DE-HGF)0$$aLindenmeyer, Constantin P.$$b1
000889921 7001_ $$0P:(DE-HGF)0$$aBaumgärtner, Nils$$b2
000889921 7001_ $$0P:(DE-Juel1)168451$$aKotzur, Leander$$b3$$ufzj
000889921 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4$$ufzj
000889921 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b5$$ufzj
000889921 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b6$$ufzj
000889921 7001_ $$0P:(DE-HGF)0$$aBrandt, Adam R.$$b7$$eCorresponding author
000889921 8564_ $$uhttps://juser.fz-juelich.de/record/889921/files/2002.03059.pdf$$yOpenAccess
000889921 909CO $$ooai:juser.fz-juelich.de:889921$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889921 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000889921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168451$$aForschungszentrum Jülich$$b3$$kFZJ
000889921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000889921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b5$$kFZJ
000889921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b6$$kFZJ
000889921 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000889921 9141_ $$y2020
000889921 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889921 920__ $$lyes
000889921 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000889921 9801_ $$aFullTexts
000889921 980__ $$apreprint
000889921 980__ $$aVDB
000889921 980__ $$aUNRESTRICTED
000889921 980__ $$aI:(DE-Juel1)IEK-10-20170217
000889921 981__ $$aI:(DE-Juel1)ICE-1-20170217