000889922 001__ 889922
000889922 005__ 20240712112855.0
000889922 0247_ $$2doi$$a10.1002/ente.202000643
000889922 0247_ $$2ISSN$$a2194-4288
000889922 0247_ $$2ISSN$$a2194-4296
000889922 0247_ $$2Handle$$a2128/26885
000889922 0247_ $$2altmetric$$aaltmetric:93945381
000889922 0247_ $$2WOS$$aWOS:000587355800001
000889922 037__ $$aFZJ-2021-00530
000889922 082__ $$a620
000889922 1001_ $$0P:(DE-HGF)0$$aEngelpracht, Mirko$$b0
000889922 245__ $$aUpgrading Waste Heat from 90 to 110 °C: The Potential of Adsorption Heat Transformation
000889922 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2021
000889922 3367_ $$2DRIVER$$aarticle
000889922 3367_ $$2DataCite$$aOutput Types/Journal article
000889922 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639564448_11312
000889922 3367_ $$2BibTeX$$aARTICLE
000889922 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889922 3367_ $$00$$2EndNote$$aJournal Article
000889922 520__ $$aLow‐grade heat is abundantly available below 100 °C, whereas industry mainly needs heat above 100 °C. Thus, the industry cannot directly utilize low‐grade heat to save primary energy and emissions. Low‐grade heat can be utilized by adsorption heat transformers (AdHTs); however, closed AdHTs to upgrade heat above 100 °C are only investigated by idealized steady‐state analyses, which indicate the maximal theoretical performance. For evaluating the performance achievable in practice, this work studies a closed AdHT in a one‐bed configuration using dynamic simulation. For the working pair AQSOA‐Z02/H2O, the performance is optimized via the design of the adsorber heat exchanger and the control of the AdHT cycle. When heat is upgraded from 90 to 110 °C, releasing waste heat at 35 °C, the maximum exergetic coefficient of performance (COPexergetic) is 0.64, and the maximum specific heating power (SHP) is 590 W kg−1. The maximum SHP can increase by 35% when releasing waste heat at 25 °C. Both performance indicators strongly depend on design, control, and the available temperature of the waste heat. Overall, AdHTs with optimized design and control are promising to utilize low‐grade waste heat.
000889922 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x0
000889922 588__ $$aDataset connected to CrossRef
000889922 7001_ $$0P:(DE-HGF)0$$aGibelhaus, Andrej$$b1
000889922 7001_ $$0P:(DE-HGF)0$$aSeiler, Jan$$b2
000889922 7001_ $$0P:(DE-HGF)0$$aGraf, Stefan$$b3
000889922 7001_ $$0P:(DE-HGF)0$$aNasruddin, Nasruddin$$b4
000889922 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b5$$eCorresponding author$$ufzj
000889922 773__ $$0PERI:(DE-600)2700412-0$$a10.1002/ente.202000643$$gVol. 9, no. 1, p. 2000643 -$$n1$$p2000643 -$$tEnergy technology$$v9$$x2194-4296$$y2021
000889922 8564_ $$uhttps://juser.fz-juelich.de/record/889922/files/ente.202000643-1.pdf$$yOpenAccess
000889922 909CO $$ooai:juser.fz-juelich.de:889922$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889922 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000889922 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000889922 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000889922 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b5$$kFZJ
000889922 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b5$$kRWTH
000889922 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zürich$$b5
000889922 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
000889922 9141_ $$y2021
000889922 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-26
000889922 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-26
000889922 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-26
000889922 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY TECHNOL-GER : 2018$$d2020-08-26
000889922 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000889922 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-26$$wger
000889922 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-26
000889922 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-26
000889922 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-26
000889922 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889922 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-26
000889922 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-26
000889922 920__ $$lyes
000889922 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000889922 9801_ $$aFullTexts
000889922 980__ $$ajournal
000889922 980__ $$aVDB
000889922 980__ $$aI:(DE-Juel1)IEK-10-20170217
000889922 980__ $$aUNRESTRICTED
000889922 981__ $$aI:(DE-Juel1)ICE-1-20170217