001     889922
005     20240712112855.0
024 7 _ |a 10.1002/ente.202000643
|2 doi
024 7 _ |a 2194-4288
|2 ISSN
024 7 _ |a 2194-4296
|2 ISSN
024 7 _ |a 2128/26885
|2 Handle
024 7 _ |a altmetric:93945381
|2 altmetric
024 7 _ |a WOS:000587355800001
|2 WOS
037 _ _ |a FZJ-2021-00530
082 _ _ |a 620
100 1 _ |a Engelpracht, Mirko
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Upgrading Waste Heat from 90 to 110 °C: The Potential of Adsorption Heat Transformation
260 _ _ |a Weinheim [u.a.]
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639564448_11312
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Low‐grade heat is abundantly available below 100 °C, whereas industry mainly needs heat above 100 °C. Thus, the industry cannot directly utilize low‐grade heat to save primary energy and emissions. Low‐grade heat can be utilized by adsorption heat transformers (AdHTs); however, closed AdHTs to upgrade heat above 100 °C are only investigated by idealized steady‐state analyses, which indicate the maximal theoretical performance. For evaluating the performance achievable in practice, this work studies a closed AdHT in a one‐bed configuration using dynamic simulation. For the working pair AQSOA‐Z02/H2O, the performance is optimized via the design of the adsorber heat exchanger and the control of the AdHT cycle. When heat is upgraded from 90 to 110 °C, releasing waste heat at 35 °C, the maximum exergetic coefficient of performance (COPexergetic) is 0.64, and the maximum specific heating power (SHP) is 590 W kg−1. The maximum SHP can increase by 35% when releasing waste heat at 25 °C. Both performance indicators strongly depend on design, control, and the available temperature of the waste heat. Overall, AdHTs with optimized design and control are promising to utilize low‐grade waste heat.
536 _ _ |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)
|0 G:(DE-HGF)POF4-1121
|c POF4-112
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gibelhaus, Andrej
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Seiler, Jan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Graf, Stefan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Nasruddin, Nasruddin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/ente.202000643
|g Vol. 9, no. 1, p. 2000643 -
|0 PERI:(DE-600)2700412-0
|n 1
|p 2000643 -
|t Energy technology
|v 9
|y 2021
|x 2194-4296
856 4 _ |u https://juser.fz-juelich.de/record/889922/files/ente.202000643-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889922
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172023
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)172023
910 1 _ |a ETH Zürich
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)172023
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|9 G:(DE-HGF)POF4-1121
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY TECHNOL-GER : 2018
|d 2020-08-26
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-26
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21