000889923 001__ 889923 000889923 005__ 20240712112900.0 000889923 0247_ $$2doi$$a10.1039/D0EE01530J 000889923 0247_ $$2ISSN$$a1754-5692 000889923 0247_ $$2ISSN$$a1754-5706 000889923 0247_ $$2Handle$$a2128/26886 000889923 0247_ $$2altmetric$$aaltmetric:86645228 000889923 0247_ $$2WOS$$aWOS:000570224500018 000889923 037__ $$aFZJ-2021-00531 000889923 082__ $$a690 000889923 1001_ $$0P:(DE-HGF)0$$aMüller, Leonard Jan$$b0 000889923 245__ $$aThe carbon footprint of the carbon feedstock CO 2 000889923 260__ $$aCambridge$$bRSC Publ.$$c2020 000889923 3367_ $$2DRIVER$$aarticle 000889923 3367_ $$2DataCite$$aOutput Types/Journal article 000889923 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611250437_23855 000889923 3367_ $$2BibTeX$$aARTICLE 000889923 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000889923 3367_ $$00$$2EndNote$$aJournal Article 000889923 520__ $$aCapturing and utilizing CO2 as carbon feedstock for chemicals, fuels, or polymers is frequently discussed to replace fossil carbon and thereby help mitigate climate change. Emission reductions by Carbon Capture and Utilization (CCU) depend strongly on the choice of the CO2 source because CO2 sources differ in CO2 concentration and the resulting energy demand for capture. From a climate-change perspective, CO2 should be captured at the CO2 source with the lowest CO2 emissions from capture. However, reported carbon footprints differ widely for CO2 captured, from strongly negative to strongly positive for the same source. The differences are due to methodological ambiguity in the treatment of multifunctionality in current assessment practice. This paper reviews methodological approaches for determining the carbon footprint of captured CO2 as carbon feedstock, and shows why some approaches lead to suboptimal choices of CO2 sources and that increased consistency in life cycle assessment (LCA) studies on CCU is needed. Based on strict application of Life Cycle Assessment (LCA) standards and guidelines, it is shown that substitution should be applied to avoid suboptimal choices of CO2 sources. The resulting methodological recommendations are applied to estimate the carbon footprint of feedstock CO2 for current CO2 sources in Europe and for future CO2 sources in a scenario for a low carbon economy. For all CO2 sources, the cradle-to-gate footprint of captured CO2 is negative ranging from −0.95 to −0.59 kg CO2 eq. per kg of feedstock CO2 today and from −0.99 to −0.98 kg CO2 eq. in a low carbon economy. The carbon footprints of different CO2 sources differ mainly due to their energy demands. The presented assessment method and the carbon footprints of the CO2 feedstocks CO2 provide the basis for future assessments of carbon capture and utilization processes. 000889923 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0 000889923 588__ $$aDataset connected to CrossRef 000889923 7001_ $$0P:(DE-HGF)0$$aKätelhön, Arne$$b1 000889923 7001_ $$0P:(DE-HGF)0$$aBringezu, Stefan$$b2 000889923 7001_ $$0P:(DE-HGF)0$$aMcCoy, Sean$$b3 000889923 7001_ $$0P:(DE-HGF)0$$aSuh, Sangwon$$b4 000889923 7001_ $$0P:(DE-HGF)0$$aEdwards, Robert$$b5 000889923 7001_ $$0P:(DE-HGF)0$$aSick, Volker$$b6 000889923 7001_ $$0P:(DE-HGF)0$$aKaiser, Simon$$b7 000889923 7001_ $$0P:(DE-HGF)0$$aCuéllar-Franca, Rosa$$b8 000889923 7001_ $$0P:(DE-HGF)0$$aEl Khamlichi, Aïcha$$b9 000889923 7001_ $$0P:(DE-HGF)0$$aLee, Jay H.$$b10 000889923 7001_ $$0P:(DE-HGF)0$$avon der Assen, Niklas$$b11 000889923 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b12$$eCorresponding author$$ufzj 000889923 773__ $$0PERI:(DE-600)2439879-2$$a10.1039/D0EE01530J$$gVol. 13, no. 9, p. 2979 - 2992$$n9$$p2979 - 2992$$tEnergy & environmental science$$v13$$x1754-5706$$y2020 000889923 8564_ $$uhttps://juser.fz-juelich.de/record/889923/files/d0ee01530j.pdf$$yOpenAccess 000889923 909CO $$ooai:juser.fz-juelich.de:889923$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000889923 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH 000889923 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH 000889923 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b11$$kRWTH 000889923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b12$$kFZJ 000889923 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b12$$kRWTH 000889923 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zürich$$b12 000889923 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000889923 9141_ $$y2020 000889923 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 000889923 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04 000889923 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04 000889923 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-04 000889923 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000889923 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-04 000889923 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bENERG ENVIRON SCI : 2018$$d2020-09-04 000889923 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04 000889923 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04 000889923 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-09-04$$wger 000889923 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-09-04 000889923 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-04$$wger 000889923 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG ENVIRON SCI : 2018$$d2020-09-04 000889923 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04 000889923 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04 000889923 920__ $$lyes 000889923 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0 000889923 9801_ $$aFullTexts 000889923 980__ $$ajournal 000889923 980__ $$aVDB 000889923 980__ $$aUNRESTRICTED 000889923 980__ $$aI:(DE-Juel1)IEK-10-20170217 000889923 981__ $$aI:(DE-Juel1)ICE-1-20170217