000889925 001__ 889925
000889925 005__ 20240712112911.0
000889925 0247_ $$2doi$$a10.1002/ente.201900617
000889925 0247_ $$2ISSN$$a2194-4288
000889925 0247_ $$2ISSN$$a2194-4296
000889925 0247_ $$2Handle$$a2128/26888
000889925 0247_ $$2altmetric$$aaltmetric:68910085
000889925 0247_ $$2WOS$$aWOS:000491127100001
000889925 037__ $$aFZJ-2021-00533
000889925 082__ $$a620
000889925 1001_ $$0P:(DE-HGF)0$$aGraf, Stefan$$b0
000889925 245__ $$aToward Optimal Metal–Organic Frameworks for Adsorption Chillers: Insights from the Scale‐Up of MIL‐101(Cr) and NH 2 ‐MIL‐125
000889925 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2020
000889925 3367_ $$2DRIVER$$aarticle
000889925 3367_ $$2DataCite$$aOutput Types/Journal article
000889925 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611252001_23855
000889925 3367_ $$2BibTeX$$aARTICLE
000889925 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889925 3367_ $$00$$2EndNote$$aJournal Article
000889925 520__ $$aThe metal–organic frameworks (MOFs) MIL‐101(Cr) and NH2‐MIL‐125 offer high adsorption capacities and have therefore been suggested for sustainable energy conversion in adsorption chillers. Herein, these MOFs are benchmarked to commercial Siogel. The evaluation method combines small‐scale experiments with dynamic modeling of full‐scale adsorption chillers. For the common temperature set 10/30/80 °C, it is found that MIL‐101(Cr) has the highest adsorption capacity, but considerably lower efficiency (−19%) and power density (−66%) than Siogel. NH2‐MIL‐125 increases efficiency by 18% compared with Siogel, but reduces the practically important power density by 28%. From the results, guidelines for MOF development are derived: High efficiencies are achieved by matching the shape of the isotherms to the specific operating temperatures. By only adapting shape, efficiencies are 1.5 times higher. Also, higher power density requires matching the shape of the isotherms to create high driving forces for heat and mass transfer. Second, if MOFs’ heat and mass transfer coefficients could reach the level of Siogel, their maximum power density would double. Thus, development of MOFs should go beyond adsorption capacity, and tune the structure to the application requirements. As a result, MOFs could to serve as optimal adsorbents for sustainable energy conversion. 
000889925 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000889925 588__ $$aDataset connected to CrossRef
000889925 7001_ $$0P:(DE-Juel1)177738$$aRedder, Florian$$b1$$ufzj
000889925 7001_ $$0P:(DE-Juel1)172630$$aBau, Uwe$$b2
000889925 7001_ $$0P:(DE-HGF)0$$ade Lange, Martijn$$b3
000889925 7001_ $$0P:(DE-HGF)0$$aKapteijn, Freek$$b4
000889925 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b5$$eCorresponding author$$ufzj
000889925 773__ $$0PERI:(DE-600)2700412-0$$a10.1002/ente.201900617$$gVol. 8, no. 1, p. 1900617 -$$n1$$p1900617 -$$tEnergy technology$$v8$$x2194-4296$$y2020
000889925 8564_ $$uhttps://juser.fz-juelich.de/record/889925/files/ente.201900617.pdf$$yOpenAccess
000889925 909CO $$ooai:juser.fz-juelich.de:889925$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889925 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000889925 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)177738$$aRWTH Aachen$$b1$$kRWTH
000889925 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172630$$aRWTH Aachen$$b2$$kRWTH
000889925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b5$$kFZJ
000889925 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b5$$kRWTH
000889925 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000889925 9141_ $$y2020
000889925 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-26
000889925 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-26
000889925 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-26
000889925 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY TECHNOL-GER : 2018$$d2020-08-26
000889925 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000889925 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-26$$wger
000889925 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-26
000889925 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-26
000889925 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-26
000889925 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889925 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-26
000889925 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-26
000889925 920__ $$lyes
000889925 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000889925 9801_ $$aFullTexts
000889925 980__ $$ajournal
000889925 980__ $$aVDB
000889925 980__ $$aUNRESTRICTED
000889925 980__ $$aI:(DE-Juel1)IEK-10-20170217
000889925 981__ $$aI:(DE-Juel1)ICE-1-20170217