001     889925
005     20240712112911.0
024 7 _ |a 10.1002/ente.201900617
|2 doi
024 7 _ |a 2194-4288
|2 ISSN
024 7 _ |a 2194-4296
|2 ISSN
024 7 _ |a 2128/26888
|2 Handle
024 7 _ |a altmetric:68910085
|2 altmetric
024 7 _ |a WOS:000491127100001
|2 WOS
037 _ _ |a FZJ-2021-00533
082 _ _ |a 620
100 1 _ |a Graf, Stefan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Toward Optimal Metal–Organic Frameworks for Adsorption Chillers: Insights from the Scale‐Up of MIL‐101(Cr) and NH 2 ‐MIL‐125
260 _ _ |a Weinheim [u.a.]
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611252001_23855
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The metal–organic frameworks (MOFs) MIL‐101(Cr) and NH2‐MIL‐125 offer high adsorption capacities and have therefore been suggested for sustainable energy conversion in adsorption chillers. Herein, these MOFs are benchmarked to commercial Siogel. The evaluation method combines small‐scale experiments with dynamic modeling of full‐scale adsorption chillers. For the common temperature set 10/30/80 °C, it is found that MIL‐101(Cr) has the highest adsorption capacity, but considerably lower efficiency (−19%) and power density (−66%) than Siogel. NH2‐MIL‐125 increases efficiency by 18% compared with Siogel, but reduces the practically important power density by 28%. From the results, guidelines for MOF development are derived: High efficiencies are achieved by matching the shape of the isotherms to the specific operating temperatures. By only adapting shape, efficiencies are 1.5 times higher. Also, higher power density requires matching the shape of the isotherms to create high driving forces for heat and mass transfer. Second, if MOFs’ heat and mass transfer coefficients could reach the level of Siogel, their maximum power density would double. Thus, development of MOFs should go beyond adsorption capacity, and tune the structure to the application requirements. As a result, MOFs could to serve as optimal adsorbents for sustainable energy conversion.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Redder, Florian
|0 P:(DE-Juel1)177738
|b 1
|u fzj
700 1 _ |a Bau, Uwe
|0 P:(DE-Juel1)172630
|b 2
700 1 _ |a de Lange, Martijn
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kapteijn, Freek
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/ente.201900617
|g Vol. 8, no. 1, p. 1900617 -
|0 PERI:(DE-600)2700412-0
|n 1
|p 1900617 -
|t Energy technology
|v 8
|y 2020
|x 2194-4296
856 4 _ |u https://juser.fz-juelich.de/record/889925/files/ente.201900617.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889925
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)177738
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)172630
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172023
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)172023
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY TECHNOL-GER : 2018
|d 2020-08-26
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-26
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21