000889934 001__ 889934
000889934 005__ 20230111074232.0
000889934 0247_ $$2doi$$a10.3390/rs13010016
000889934 0247_ $$2Handle$$a2128/26897
000889934 0247_ $$2WOS$$aWOS:000606071100001
000889934 0247_ $$2altmetric$$aaltmetric:102930275
000889934 037__ $$aFZJ-2021-00540
000889934 041__ $$aEnglish
000889934 082__ $$a620
000889934 1001_ $$0P:(DE-HGF)0$$aAhmed, Kazi Rifat$$b0$$eCorresponding author
000889934 245__ $$aA First Assessment of the 2018 European Drought Impact on Ecosystem Evapotranspiration
000889934 260__ $$aBasel$$bMDPI$$c2021
000889934 3367_ $$2DRIVER$$aarticle
000889934 3367_ $$2DataCite$$aOutput Types/Journal article
000889934 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640681434_14492
000889934 3367_ $$2BibTeX$$aARTICLE
000889934 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889934 3367_ $$00$$2EndNote$$aJournal Article
000889934 520__ $$aThe combined heatwave and drought in 2018 notably affected the state and functioning of European ecosystems. The severity and distribution of this extreme event across ecosystem types and its possible implication on ecosystem water fluxes are still poorly understood. This study estimates spatio-temporal changes in evapotranspiration (ET) during the 2018 drought and heatwave and assesses how these changes are distributed in European ecosystems along climatic gradients. We used the ET eight-day composite product from the MODerate Resolution Imaging Spectroradiometer (MODIS) together with meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF ERA5). Our results indicate that ecosystem ET was strongly reduced (up to −50% compared to a 10-year reference period) in areas with extreme anomalies in surface air temperature (Tsa) and precipitation (P) in central, northern, eastern, and western Europe. Northern and Eastern Europe had prolonged anomalies of up to seven months with extreme intensities (relative and absolute) of Tsa, P, and ET. Particularly, agricultural areas, mixed natural vegetation, and non-irrigated agricultural areas were the most affected by the increased temperatures in northern Europe. Our results show contrasting drought impacts on ecosystem ET between the North and South of Europe as well as on ecosystem types.
000889934 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000889934 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000889934 588__ $$aDataset connected to CrossRef
000889934 7001_ $$00000-0002-0365-7353$$aPaul-Limoges, Eugénie$$b1
000889934 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b2
000889934 7001_ $$00000-0001-8965-3427$$aDamm, Alexander$$b3
000889934 773__ $$0PERI:(DE-600)2513863-7$$a10.3390/rs13010016$$gVol. 13, no. 1, p. 16 -$$n1$$p16 -$$tRemote sensing$$v13$$x2072-4292$$y2021
000889934 8564_ $$uhttps://juser.fz-juelich.de/record/889934/files/remotesensing-13-00016-v2.pdf$$yOpenAccess
000889934 909CO $$ooai:juser.fz-juelich.de:889934$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b2$$kFZJ
000889934 9130_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000889934 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000889934 9141_ $$y2021
000889934 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-12
000889934 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-12
000889934 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889934 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-12
000889934 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS-BASEL : 2018$$d2020-09-12
000889934 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-12
000889934 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-12
000889934 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-12
000889934 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-12
000889934 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-12
000889934 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-12
000889934 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889934 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-12
000889934 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-12
000889934 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-12
000889934 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-12
000889934 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-12
000889934 920__ $$lyes
000889934 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000889934 980__ $$ajournal
000889934 980__ $$aVDB
000889934 980__ $$aI:(DE-Juel1)IBG-2-20101118
000889934 980__ $$aUNRESTRICTED
000889934 9801_ $$aFullTexts