001     889934
005     20230111074232.0
024 7 _ |a 10.3390/rs13010016
|2 doi
024 7 _ |a 2128/26897
|2 Handle
024 7 _ |a WOS:000606071100001
|2 WOS
024 7 _ |a altmetric:102930275
|2 altmetric
037 _ _ |a FZJ-2021-00540
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Ahmed, Kazi Rifat
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a A First Assessment of the 2018 European Drought Impact on Ecosystem Evapotranspiration
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640681434_14492
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The combined heatwave and drought in 2018 notably affected the state and functioning of European ecosystems. The severity and distribution of this extreme event across ecosystem types and its possible implication on ecosystem water fluxes are still poorly understood. This study estimates spatio-temporal changes in evapotranspiration (ET) during the 2018 drought and heatwave and assesses how these changes are distributed in European ecosystems along climatic gradients. We used the ET eight-day composite product from the MODerate Resolution Imaging Spectroradiometer (MODIS) together with meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF ERA5). Our results indicate that ecosystem ET was strongly reduced (up to −50% compared to a 10-year reference period) in areas with extreme anomalies in surface air temperature (Tsa) and precipitation (P) in central, northern, eastern, and western Europe. Northern and Eastern Europe had prolonged anomalies of up to seven months with extreme intensities (relative and absolute) of Tsa, P, and ET. Particularly, agricultural areas, mixed natural vegetation, and non-irrigated agricultural areas were the most affected by the increased temperatures in northern Europe. Our results show contrasting drought impacts on ecosystem ET between the North and South of Europe as well as on ecosystem types.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Paul-Limoges, Eugénie
|0 0000-0002-0365-7353
|b 1
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 2
700 1 _ |a Damm, Alexander
|0 0000-0001-8965-3427
|b 3
773 _ _ |a 10.3390/rs13010016
|g Vol. 13, no. 1, p. 16 -
|0 PERI:(DE-600)2513863-7
|n 1
|p 16 -
|t Remote sensing
|v 13
|y 2021
|x 2072-4292
856 4 _ |u https://juser.fz-juelich.de/record/889934/files/remotesensing-13-00016-v2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889934
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129388
913 0 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Plant Science
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS-BASEL : 2018
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-12
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21