001     889937
005     20240712084526.0
024 7 _ |a 10.1103/PhysRevB.103.035134
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4446
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 2128/26898
|2 Handle
024 7 _ |a WOS:000609013000002
|2 WOS
024 7 _ |a altmetric:99005006
|2 altmetric
037 _ _ |a FZJ-2021-00543
082 _ _ |a 530
100 1 _ |a Mlynczak, Ewa
|0 P:(DE-Juel1)161379
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Spin-polarized quantized electronic structure of Fe(001) with symmetry breaking due to the magnetization direction
260 _ _ |a Woodbury, NY
|c 2021
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636709242_30170
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Quantum well states formed by d electrons in metallic thin films are responsible for many fundamental phenomena that oscillate with layer thickness, such as magnetic anisotropy or magnetoresistance. Using momentum microscopy and angle-resolved photoemission, we mapped in unprecedented detail the quantized electronic states of Fe(001) in a broad photon energy range starting from soft x-ray (160 eV) down to vacuum ultraviolet (8.4 eV). We show that it is possible to simulate the experimentally observed photoemission spectra with high accuracy by using the ab initio electronic bulk band structure as the initial state, taking into account that free electron final electronic states are intrinsically broadened along the wave vector direction perpendicular to the sample surface. To simulate the thin-film case, we take into account a subset of the initial electronic states, which results in the reproduction of the quantized electronic structure observed in the experiment. In addition, we present results of the spin-sensitive measurements, which are confronted with the photoemission simulation that takes into account the spin degree of freedom. We demonstrate electronic states that can be responsible for the oscillations of the magnetic anisotropy in Fe(001) thin films with periods of about 5 and 9 monolayers. We show that these quantum well states change position in reciprocal space depending on the magnetization direction. Our photoemission simulation reproduces this effect, which highlights its origin in the relativistic bulk electronic band structure of bcc Fe. We also observed magnetization-dependent spin-orbit gaps with the symmetry lower than the bulk symmetry. We believe that the same method of simulating photoemission spectra might facilitate interpretation of the photoemission intensities measured for other three-dimensional materials, especially when the spin-polarized quantized electronic states are considered.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
542 _ _ |i 2021-01-20
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Aguilera, Irene
|0 P:(DE-Juel1)145750
|b 1
|u fzj
700 1 _ |a Gospodaric, Pika
|0 P:(DE-Juel1)167375
|b 2
700 1 _ |a Heider, T.
|0 P:(DE-Juel1)165229
|b 3
700 1 _ |a Jugovac, M.
|0 P:(DE-Juel1)169309
|b 4
700 1 _ |a Zamborlini, G.
|0 P:(DE-Juel1)162281
|b 5
700 1 _ |a Tusche, C.
|0 P:(DE-Juel1)168293
|b 6
|u fzj
700 1 _ |a Suga, Shigemasa
|0 P:(DE-Juel1)176278
|b 7
700 1 _ |a Feyer, V.
|0 P:(DE-Juel1)145012
|b 8
700 1 _ |a Blügel, S.
|0 P:(DE-Juel1)130548
|b 9
700 1 _ |a Plucinski, L.
|0 P:(DE-Juel1)130895
|b 10
|u fzj
700 1 _ |a Schneider, C. M.
|0 P:(DE-Juel1)130948
|b 11
|u fzj
773 1 8 |a 10.1103/physrevb.103.035134
|b American Physical Society (APS)
|d 2021-01-20
|n 3
|p 035134
|3 journal-article
|2 Crossref
|t Physical Review B
|v 103
|y 2021
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.103.035134
|g Vol. 103, no. 3, p. 035134
|0 PERI:(DE-600)2844160-6
|n 3
|p 035134
|t Physical review / B
|v 103
|y 2021
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/889937/files/PhysRevB.103.035134.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889937
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161379
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145750
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165229
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)168293
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)145012
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130895
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130948
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-10-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-10-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-10-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-10-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2018
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-10-13
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 4
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 5
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013
999 C 5 |a 10.1016/S0167-5729(00)00006-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/65/2/201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms6558
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.57.2442
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.61.2472
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1071300
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1424068
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.027208
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3670498
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1109/TMAG.2011.2108273
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.113.067203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.92.134414
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/11/22/304
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.092401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.44.5966
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/10/14/012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41467-017-01138-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.nanolett.8b01125
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.6.041048
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.92.085138
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.102.035419
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.91.035004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.91.195410
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.47.1540
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF01567210
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0368-2048(03)00054-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0079-6816(97)00005-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-3-662-09280-4
|1 Stefan Hüfner
|2 Crossref
|9 -- missing cx lookup --
|y 2003
999 C 5 |a 10.1126/science.aaf6793
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1245085
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1361-648X/aa7173
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41467-019-08445-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41467-018-05960-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.93.035113
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.93.125409
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.266802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.97.085409
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2015.03.020
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3611648
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2013.02.022
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0927-0256(03)00104-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.62.12672
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.41.5214
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.125102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.84.1419
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cpc.2007.11.016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.045104
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/12/1/013007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/sia.740010103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.elspec.2016.11.007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/000187398243519
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21