000889939 001__ 889939
000889939 005__ 20210127115414.0
000889939 0247_ $$2Handle$$a2128/26899
000889939 037__ $$aFZJ-2021-00545
000889939 041__ $$aEnglish
000889939 1001_ $$0P:(DE-Juel1)173026$$aHaruzi, Peleg$$b0$$eCorresponding author$$ufzj
000889939 1112_ $$aComputational Methods in Water Resources XXIII$$cStanford$$d2020-12-14 - 2020-12-17$$gCMWR2020$$wUSA
000889939 245__ $$aThe potential of time-lapse GPR full-waveform inversion as high resolution imaging technique for salt, heat, and ethanol transport
000889939 260__ $$c2020
000889939 300__ $$a3
000889939 3367_ $$2ORCID$$aCONFERENCE_PAPER
000889939 3367_ $$033$$2EndNote$$aConference Paper
000889939 3367_ $$2BibTeX$$aINPROCEEDINGS
000889939 3367_ $$2DRIVER$$aconferenceObject
000889939 3367_ $$2DataCite$$aOutput Types/Conference Paper
000889939 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1611305211_17431
000889939 520__ $$aCrosshole GPR full-waveform inversion (FWI) has shown a high potential to characterize the near surface at a decimeter scale which is crucial for flow and transport. GPR FWI provide high-resolution tomograms of dielectric permittivity and electrical conductivity, which can be linked lithological properties. This study tests the potential of time-lapse GPR FWI to monitor tracers of different geophysical properties (salt, heat, ethanol). Synthetic and preliminary field results show that both properties can resolve major transport processes.
000889939 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000889939 536__ $$0G:(EU-Grant)722028$$aENIGMA - European training Network for In situ imaGing of dynaMic processes in heterogeneous subsurfAce environments (722028)$$c722028$$fH2020-MSCA-ITN-2016$$x1
000889939 7001_ $$0P:(DE-Juel1)169434$$aSchmäck, Jessica$$b1$$ufzj
000889939 7001_ $$0P:(DE-HGF)0$$aHain, Louisa$$b2
000889939 7001_ $$0P:(DE-Juel1)169315$$aZhou, Zhen$$b3$$ufzj
000889939 7001_ $$0P:(DE-HGF)0$$aHoffmann, Richard$$b4
000889939 7001_ $$0P:(DE-HGF)0$$aPouladi, Behzad$$b5
000889939 7001_ $$0P:(DE-HGF)0$$aBernardie, Jerome le$$b6
000889939 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b7$$ufzj
000889939 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b8$$ufzj
000889939 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, Jan$$b9$$ufzj
000889939 7001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b10$$ufzj
000889939 8564_ $$uhttps://juser.fz-juelich.de/record/889939/files/Haruzi_CMWR2020_extended_abstract.pdf$$yOpenAccess
000889939 909CO $$ooai:juser.fz-juelich.de:889939$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000889939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173026$$aForschungszentrum Jülich$$b0$$kFZJ
000889939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169434$$aForschungszentrum Jülich$$b1$$kFZJ
000889939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169315$$aForschungszentrum Jülich$$b3$$kFZJ
000889939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b7$$kFZJ
000889939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b8$$kFZJ
000889939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich$$b9$$kFZJ
000889939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129483$$aForschungszentrum Jülich$$b10$$kFZJ
000889939 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000889939 9141_ $$y2020
000889939 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889939 920__ $$lyes
000889939 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000889939 980__ $$acontrib
000889939 980__ $$aVDB
000889939 980__ $$aUNRESTRICTED
000889939 980__ $$aI:(DE-Juel1)IBG-3-20101118
000889939 9801_ $$aFullTexts