000889941 001__ 889941
000889941 005__ 20210401192810.0
000889941 0247_ $$2doi$$a10.1073/pnas.1919264117
000889941 0247_ $$2ISSN$$a0027-8424
000889941 0247_ $$2ISSN$$a1091-6490
000889941 0247_ $$2Handle$$a2128/26901
000889941 0247_ $$2altmetric$$aaltmetric:76313171
000889941 0247_ $$2pmid$$a32071249
000889941 0247_ $$2WOS$$aWOS:000518473500048
000889941 037__ $$aFZJ-2021-00547
000889941 082__ $$a500
000889941 1001_ $$0P:(DE-HGF)0$$aSoloviov, Dmytro$$b0
000889941 245__ $$aFunctional lipid pairs as building blocks of phase-separated membranes
000889941 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2020
000889941 3367_ $$2DRIVER$$aarticle
000889941 3367_ $$2DataCite$$aOutput Types/Journal article
000889941 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617216705_28971
000889941 3367_ $$2BibTeX$$aARTICLE
000889941 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889941 3367_ $$00$$2EndNote$$aJournal Article
000889941 520__ $$aBiological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the lateral membrane heterogeneity and the formation of domains, or rafts, are driven by lipid–lipid and lipid–protein interactions. Nevertheless, the underlying mechanisms regulating membrane heterogeneity remain poorly understood. In the present work, we combine inelastic X-ray scattering with molecular dynamics simulations to provide direct evidence for the existence of strongly coupled transient lipid pairs. These lipid pairs manifest themselves experimentally through optical vibrational (a.k.a. phononic) modes observed in binary (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]–cholesterol) and ternary (DPPC–1,2-dioleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-glycero-3-phosphocholine [DOPC/POPC]–cholesterol) systems. The existence of a phononic gap in these vibrational modes is a direct result of the finite size of patches formed by these lipid pairs. The observation of lipid pairs provides a spatial (subnanometer) and temporal (subnanosecond) window into the lipid–lipid interactions in complex mixtures of saturated/unsaturated lipids and cholesterol. Our findings represent a step toward understanding the lateral organization and dynamics of membrane domains using a well-validated probe with a high spatial and temporal resolution.
000889941 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x0
000889941 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000889941 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000889941 588__ $$aDataset connected to CrossRef
000889941 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000889941 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
000889941 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x0
000889941 7001_ $$0P:(DE-HGF)0$$aCai, Yong Q.$$b1
000889941 7001_ $$0P:(DE-HGF)0$$aBolmatov, Dima$$b2
000889941 7001_ $$0P:(DE-HGF)0$$aSuvorov, Alexey$$b3
000889941 7001_ $$0P:(DE-Juel1)177085$$aZhernenkov, Kirill$$b4$$ufzj
000889941 7001_ $$0P:(DE-HGF)0$$aZav’yalov, Dmitry$$b5
000889941 7001_ $$0P:(DE-HGF)0$$aBosak, Alexey$$b6
000889941 7001_ $$0P:(DE-HGF)0$$aUchiyama, Hiroshi$$b7
000889941 7001_ $$00000-0003-3604-0672$$aZhernenkov, Mikhail$$b8$$eCorresponding author
000889941 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1919264117$$gVol. 117, no. 9, p. 4749 - 4757$$n9$$p4749 - 4757$$tProceedings of the National Academy of Sciences of the United States of America$$v117$$x1091-6490$$y2020
000889941 8564_ $$uhttps://juser.fz-juelich.de/record/889941/files/4749.full.pdf$$yOpenAccess
000889941 909CO $$ooai:juser.fz-juelich.de:889941$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000889941 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177085$$aForschungszentrum Jülich$$b4$$kFZJ
000889941 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000889941 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000889941 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000889941 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000889941 9141_ $$y2020
000889941 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-22
000889941 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-22
000889941 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-22
000889941 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-22
000889941 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-22
000889941 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-08-22
000889941 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2018$$d2020-08-22
000889941 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000889941 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2018$$d2020-08-22
000889941 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-22
000889941 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-22
000889941 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-22
000889941 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889941 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-22
000889941 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-08-22
000889941 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-08-22$$wger
000889941 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-22
000889941 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-22
000889941 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-22
000889941 920__ $$lyes
000889941 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000889941 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x1
000889941 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000889941 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x3
000889941 980__ $$ajournal
000889941 980__ $$aVDB
000889941 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000889941 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000889941 980__ $$aI:(DE-588b)4597118-3
000889941 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000889941 980__ $$aUNRESTRICTED
000889941 9801_ $$aFullTexts