000889943 001__ 889943
000889943 005__ 20210401192810.0
000889943 0247_ $$2doi$$a10.3390/ma13153337
000889943 0247_ $$2Handle$$a2128/26902
000889943 0247_ $$2pmid$$a32727005
000889943 0247_ $$2WOS$$aWOS:000567140600001
000889943 037__ $$aFZJ-2021-00549
000889943 082__ $$a600
000889943 1001_ $$0P:(DE-HGF)0$$aBosak, Alexei$$b0
000889943 245__ $$aFluorination of Diamond Nanoparticles in Slow Neutron Reflectors Does Not Destroy Their Crystalline Cores and Clustering While Decreasing Neutron Losses
000889943 260__ $$aBasel$$bMDPI$$c2020
000889943 3367_ $$2DRIVER$$aarticle
000889943 3367_ $$2DataCite$$aOutput Types/Journal article
000889943 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617216599_12335
000889943 3367_ $$2BibTeX$$aARTICLE
000889943 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889943 3367_ $$00$$2EndNote$$aJournal Article
000889943 520__ $$aIf the wavelength of radiation and the size of inhomogeneities in the medium are approximately equal, the radiation might be intensively scattered in the medium and reflected from its surface. Such efficient nanomaterial reflectors are of great scientific and technological interest. In previous works, we demonstrated a significant improvement in the efficiency of reflection of slow neutrons from a powder of diamond nanoparticles by replacing hydrogen located on the surface of nanoparticles with fluorine and removing the residual sp2 amorphous shells of nanoparticles via the fluorination process. In this paper, we study the mechanism of this improvement using a set of complementary experimental techniques. To analyze the data on a small-angle scattering of neutrons and X-rays in powders of diamond nanoparticles, we have developed a model of discrete-size diamond nanospheres. Our results show that fluorination does not destroy either the crystalline cores of nanoparticles or their clustering in the scale range of 0.6–200 nm. This observation implies that it does not significantly affect the neutron scattering properties of the powder. We conclude that the overall increase in reflectivity from the fluorinated nanodiamond powder is primarily due to the large reduction of neutron losses in the powder caused by the removal of hydrogen contaminations.
000889943 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000889943 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000889943 588__ $$aDataset connected to CrossRef
000889943 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000889943 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1
000889943 65017 $$0V:(DE-MLZ)GC-2002-2016$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000889943 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x0
000889943 7001_ $$0P:(DE-HGF)0$$aDideikin, Artur$$b1
000889943 7001_ $$0P:(DE-HGF)0$$aDubois, Marc$$b2
000889943 7001_ $$00000-0002-7775-0008$$aIvankov, Oleksandr$$b3
000889943 7001_ $$0P:(DE-HGF)0$$aLychagin, Egor$$b4
000889943 7001_ $$0P:(DE-HGF)0$$aMuzychka, Alexei$$b5
000889943 7001_ $$0P:(DE-HGF)0$$aNekhaev, Grigory$$b6
000889943 7001_ $$00000-0002-5364-0197$$aNesvizhevsky, Valery$$b7$$eCorresponding author
000889943 7001_ $$00000-0003-1827-3771$$aNezvanov, Alexander$$b8
000889943 7001_ $$0P:(DE-HGF)0$$aSchweins, Ralf$$b9
000889943 7001_ $$0P:(DE-HGF)0$$aStrelkov, Alexander$$b10
000889943 7001_ $$0P:(DE-HGF)0$$aVul’, Alexander$$b11
000889943 7001_ $$0P:(DE-Juel1)177085$$aZhernenkov, Kirill$$b12$$ufzj
000889943 773__ $$0PERI:(DE-600)2487261-1$$a10.3390/ma13153337$$gVol. 13, no. 15, p. 3337 -$$n15$$p3337 -$$tMaterials$$v13$$x1996-1944$$y2020
000889943 8564_ $$uhttps://juser.fz-juelich.de/record/889943/files/materials-13-03337.pdf$$yOpenAccess
000889943 909CO $$ooai:juser.fz-juelich.de:889943$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000889943 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177085$$aForschungszentrum Jülich$$b12$$kFZJ
000889943 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000889943 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000889943 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000889943 9141_ $$y2020
000889943 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000889943 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000889943 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-04
000889943 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889943 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-04
000889943 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATERIALS : 2018$$d2020-09-04
000889943 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-04
000889943 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-04
000889943 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000889943 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-04
000889943 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000889943 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-04
000889943 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889943 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-04
000889943 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-04
000889943 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000889943 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-04
000889943 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000889943 920__ $$lyes
000889943 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000889943 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x1
000889943 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000889943 980__ $$ajournal
000889943 980__ $$aVDB
000889943 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000889943 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000889943 980__ $$aI:(DE-588b)4597118-3
000889943 980__ $$aUNRESTRICTED
000889943 9801_ $$aFullTexts