000889948 001__ 889948
000889948 005__ 20220125142934.0
000889948 0247_ $$2doi$$a10.1002/pssr.202000482
000889948 0247_ $$2ISSN$$a1862-6254
000889948 0247_ $$2ISSN$$a1862-6270
000889948 0247_ $$2Handle$$a2128/27581
000889948 0247_ $$2WOS$$aWOS:000596813900001
000889948 037__ $$aFZJ-2021-00553
000889948 082__ $$a530
000889948 1001_ $$0P:(DE-HGF)0$$aCheng, Yudong$$b0
000889948 245__ $$aMetavalent Bonding in Solids: Characteristic Representatives, Their Properties, and Design Options
000889948 260__ $$aWeinheim$$bWiley-VCH$$c2021
000889948 3367_ $$2DRIVER$$aarticle
000889948 3367_ $$2DataCite$$aOutput Types/Journal article
000889948 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643111636_17192
000889948 3367_ $$2BibTeX$$aARTICLE
000889948 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889948 3367_ $$00$$2EndNote$$aJournal Article
000889948 520__ $$aHeavier chalcogenides display a surprisingly wide range of applications enabled by their unconventional properties. Herein, recent studies of three groups of chalcogenides from a chemical bonding perspective are reviewed to reveal the underlying reason for their wide range of applications. For IV–VI materials (GeTe, SnTe, PbTe, PbSe, and PbS), the unique property portfolio and bond‐breaking behavior are related to a novel chemical bonding mechanism termed “metavalent bonding” (MVB). The same phenomena are also found for several V2VI3 solids (Bi2Te3, Bi2Se3, Sb2Te3, and β‐As2Te3) and some ternary chalcogenides including crystalline (GeTe)1–x(Sb2Te3)x alloys. This provides evidence for the prevalence of MVB in these compounds. Subsequently, a quantum‐chemistry‐based map is presented. Using the transfer and sharing of electrons between adjacent atoms as its two coordinates, materials using MVB are all found in a well‐defined region of the map, characterized by sharing about one electron between adjacent atoms and only small charge transfer. This also implies that the degree of MVB is tailored either via Peierls distortions (electron sharing) or charge transfer (electron transfer), leading to the transition toward covalent bonding and ionic bonding, respectively. The tailoring of MVB provides a new approach for materials design.
000889948 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000889948 536__ $$0G:(BMBF)16ES1133K$$aVerbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC -, Teilvorhaben: Forschungszentrum Jülich (16ES1133K)$$c16ES1133K$$x1
000889948 588__ $$aDataset connected to CrossRef
000889948 7001_ $$0P:(DE-HGF)0$$aWahl, Sophia$$b1
000889948 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b2$$eCorresponding author
000889948 773__ $$0PERI:(DE-600)2259465-6$$a10.1002/pssr.202000482$$gp. 2000482 -$$n3$$p2000482$$tPhysica status solidi / Rapid research letters$$v15$$x1862-6270$$y2021
000889948 8564_ $$uhttps://juser.fz-juelich.de/record/889948/files/pssr.202000482.pdf$$yOpenAccess
000889948 909CO $$ooai:juser.fz-juelich.de:889948$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000889948 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b2$$kFZJ
000889948 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000889948 9130_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000889948 9141_ $$y2021
000889948 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000889948 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000889948 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-04
000889948 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI-R : 2018$$d2020-09-04
000889948 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000889948 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-04$$wger
000889948 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000889948 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000889948 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-04
000889948 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889948 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-04
000889948 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-04
000889948 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000889948 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000889948 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000889948 980__ $$ajournal
000889948 980__ $$aVDB
000889948 980__ $$aI:(DE-Juel1)PGI-10-20170113
000889948 980__ $$aUNRESTRICTED
000889948 9801_ $$aFullTexts