000889958 001__ 889958
000889958 005__ 20210127115416.0
000889958 0247_ $$2Handle$$a2128/26971
000889958 037__ $$aFZJ-2021-00561
000889958 041__ $$aEnglish
000889958 1001_ $$0P:(DE-Juel1)173026$$aHaruzi, Peleg$$b0$$eCorresponding author$$ufzj
000889958 1112_ $$aComputational Methods in Water Resources XXIII$$cStanford$$d2020-12-15 - 2020-12-15$$gCMWR2020$$wUSA
000889958 245__ $$aThe potential of time-lapse GPR full-waveform inversion as high resolution imaging technique for salt and ethanol transport
000889958 260__ $$c2020
000889958 3367_ $$033$$2EndNote$$aConference Paper
000889958 3367_ $$2DataCite$$aOther
000889958 3367_ $$2BibTeX$$aINPROCEEDINGS
000889958 3367_ $$2DRIVER$$aconferenceObject
000889958 3367_ $$2ORCID$$aLECTURE_SPEECH
000889958 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1611416381_21201$$xAfter Call
000889958 520__ $$aCross-hole GPR full-waveform inversion (FWI) has shown a high potential to characterize the near surface at a decimeter scale which is crucial for flow and transport. GPR FWI provide high-resolution tomograms of dielectric permittivity (ε) and electrical conductivity (EC), which can be linked lithological properties. This study tests the potential of time-lapse GPR FWI to monitor tracers of different geophysical properties (salt, heat, ethanol). Synthetic and field results show that both properties can resolve the plume at decimeter- channelized transport- scale.
000889958 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000889958 536__ $$0G:(EU-Grant)722028$$aENIGMA - European training Network for In situ imaGing of dynaMic processes in heterogeneous subsurfAce environments (722028)$$c722028$$fH2020-MSCA-ITN-2016$$x1
000889958 65027 $$0V:(DE-MLZ)SciArea-140$$2V:(DE-HGF)$$aGeosciences$$x0
000889958 7001_ $$0P:(DE-Juel1)169315$$aZhou, Zhen$$b1$$ufzj
000889958 7001_ $$0P:(DE-Juel1)169434$$aSchmäck, Jessica$$b2$$ufzj
000889958 7001_ $$0P:(DE-HGF)0$$aHoffmann, Richard$$b3
000889958 7001_ $$0P:(DE-HGF)0$$aPouladi, Behzad$$b4
000889958 7001_ $$0P:(DE-HGF)0$$aBerandie, Jerome de La$$b5
000889958 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b6$$ufzj
000889958 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b7$$ufzj
000889958 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, Jan$$b8$$ufzj
000889958 7001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b9$$ufzj
000889958 8564_ $$uhttps://juser.fz-juelich.de/record/889958/files/Haruzi_CMWR2020.pdf$$yOpenAccess
000889958 909CO $$ooai:juser.fz-juelich.de:889958$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000889958 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173026$$aForschungszentrum Jülich$$b0$$kFZJ
000889958 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169315$$aForschungszentrum Jülich$$b1$$kFZJ
000889958 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169434$$aForschungszentrum Jülich$$b2$$kFZJ
000889958 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b6$$kFZJ
000889958 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b7$$kFZJ
000889958 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich$$b8$$kFZJ
000889958 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129483$$aForschungszentrum Jülich$$b9$$kFZJ
000889958 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000889958 9141_ $$y2020
000889958 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889958 920__ $$lyes
000889958 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000889958 980__ $$aconf
000889958 980__ $$aVDB
000889958 980__ $$aUNRESTRICTED
000889958 980__ $$aI:(DE-Juel1)IBG-3-20101118
000889958 9801_ $$aFullTexts