000889971 001__ 889971
000889971 005__ 20230217124325.0
000889971 0247_ $$2doi$$a10.1103/PhysRevC.103.015202
000889971 0247_ $$2ISSN$$a0556-2813
000889971 0247_ $$2ISSN$$a1089-490X
000889971 0247_ $$2ISSN$$a1538-4497
000889971 0247_ $$2ISSN$$a2469-9985
000889971 0247_ $$2ISSN$$a2469-9993
000889971 0247_ $$2ISSN$$a2470-0002
000889971 0247_ $$2Handle$$a2128/28157
000889971 0247_ $$2altmetric$$aaltmetric:55322384
000889971 0247_ $$2WOS$$aWOS:000608618400008
000889971 037__ $$aFZJ-2021-00574
000889971 082__ $$a530
000889971 1001_ $$0P:(DE-HGF)0$$aDragos, Jack$$b0$$eCorresponding author
000889971 245__ $$aConfirming the existence of the strong CP problem in lattice QCD with the gradient flo
000889971 260__ $$aWoodbury, NY$$bInst.$$c2021
000889971 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2021-01-19
000889971 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2021-01-01
000889971 3367_ $$2DRIVER$$aarticle
000889971 3367_ $$2DataCite$$aOutput Types/Journal article
000889971 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626176998_17001
000889971 3367_ $$2BibTeX$$aARTICLE
000889971 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889971 3367_ $$00$$2EndNote$$aJournal Article
000889971 520__ $$aWe calculate the electric dipole moment of the nucleon induced by the quantum chromodynamics θ term. We use the gradient flow to define the topological charge and use Nf=2+1 flavors of dynamical quarks corresponding to pion masses of 700, 570, and 410MeV, and perform an extrapolation to the physical point based on chiral perturbation theory. We perform calculations at three different lattice spacings in the range of 0.07fm<a<0.11fm at a single value of the pion mass, to enable control on discretization effects. We also investigate finite-size effects using two different volumes. A novel technique is applied to improve the signal-to-noise ratio in the form factor calculations. The very mild discretization effects observed suggest a continuumlike behavior of the nucleon electric dipole moment toward the chiral limit. Under this assumption our results read dn=−0.00152(71)¯θefm and dp=0.0011(10)¯θefm. Assuming the θ term is the only source of CP violation, the experimental bound on the neutron electric dipole moment limits ∣∣¯θ∣∣<1.98×10−10 (90% CL). A first attempt at calculating the nucleon Schiff moment in the continuum resulted in Sp=0.50(59)×10−4¯θefm3 and Sn=−0.10(43)×10−4¯θefm3.
000889971 536__ $$0G:(DE-HGF)POF4-511$$a511 - Enabling Computational- & Data-Intensive Science and Engineering (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000889971 536__ $$0G:(DE-Juel1)jias40_20190501$$aBeyond the Standard Model Matrix Elements from lattice QCD (jias40_20190501)$$cjias40_20190501$$fBeyond the Standard Model Matrix Elements from lattice QCD$$x1
000889971 542__ $$2Crossref$$i2021-01-19$$uhttps://creativecommons.org/licenses/by/4.0/
000889971 588__ $$aDataset connected to CrossRef
000889971 7001_ $$0P:(DE-Juel1)161205$$aShindler, Andrea$$b1
000889971 7001_ $$0P:(DE-Juel1)156527$$ade Vries, Jordy$$b2
000889971 7001_ $$0P:(DE-HGF)0$$aYousif, Ahmed$$b3
000889971 7001_ $$0P:(DE-Juel1)159481$$aLuu, Tom$$b4
000889971 77318 $$2Crossref$$3journal-article$$a10.1103/physrevc.103.015202$$bAmerican Physical Society (APS)$$d2021-01-19$$n1$$p015202$$tPhysical Review C$$v103$$x2469-9985$$y2021
000889971 773__ $$0PERI:(DE-600)2844098-5$$a10.1103/PhysRevC.103.015202$$gVol. 103, no. 1, p. 015202$$n1$$p015202$$tPhysical review / C$$v103$$x2469-9985$$y2021
000889971 8564_ $$uhttps://juser.fz-juelich.de/record/889971/files/PhysRevC.103.015202.pdf$$yOpenAccess
000889971 909CO $$ooai:juser.fz-juelich.de:889971$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159481$$aForschungszentrum Jülich$$b4$$kFZJ
000889971 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000889971 9130_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000889971 9141_ $$y2021
000889971 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000889971 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000889971 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-10-13
000889971 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889971 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-10-13
000889971 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000889971 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000889971 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000889971 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000889971 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889971 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-10-13
000889971 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV C : 2018$$d2020-10-13
000889971 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000889971 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000889971 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000889971 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000889971 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000889971 980__ $$ajournal
000889971 980__ $$aVDB
000889971 980__ $$aUNRESTRICTED
000889971 980__ $$aI:(DE-Juel1)IAS-4-20090406
000889971 980__ $$aI:(DE-82)080012_20140620
000889971 9801_ $$aFullTexts
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.72.014504
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.73.054509
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.062001
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.93.074503
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.93.094503
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.96.014501
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1051/epjconf/201817501014
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.114026
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1051/epjconf/201713708003
000889971 999C5 $$1A. Shindler$$2Crossref$$oA. Shindler 2014$$y2014
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.094518
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.334.0259
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.334.0215
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.334.0260
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.334.0219
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.102.034509
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2010)071
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2011)051
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.074502
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(79)90128-X
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2010.03.005
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2010.11.042
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2010.12.018
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2012)097
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.84.065501
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2015)104
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2015)083
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.19.2227
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.78.807
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.108.120
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.131801
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.092003
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.91.015001
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.aop.2010.03.005
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.92.045201
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1257050
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.094801
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2011.01.027
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.79.034503
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.78.011502
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0920-5632(90)90273-W
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(91)90219-G
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2010)101
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0003-4916(03)00009-5
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-4655(03)00467-3
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2006.12.001
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2011)036
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2014)150
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2010.11.020
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.97.034507
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2004.11.043
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.114513
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.93.039904
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.89.074511
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.052001
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.80.052008
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.117.054801
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2013-13031-x
000889971 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.015042