001     889986
005     20220930130304.0
024 7 _ |a 10.1029/2020WR027828
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2128/26918
|2 Handle
024 7 _ |a WOS:000618001100011
|2 WOS
037 _ _ |a FZJ-2021-00581
082 _ _ |a 550
100 1 _ |a Hartick, Carl
|0 P:(DE-Juel1)178689
|b 0
|e Corresponding author
245 _ _ |a An Interannual Probabilistic Assessment of Subsurface Water Storage Over Europe Using a Fully Coupled Terrestrial Model
260 _ _ |a [New York]
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639044059_7732
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The years 2018 and 2019 were two of the hottest and driest in Mid‐Europe, highlighting the need for a comprehensive assessment of available water resources. In this study, we propose a probabilistic, terrestrial water assessment method, which utilizes a terrestrial forward model that closes the coupled water and energy cycles, from groundwater to the top of the atmosphere. In this methodology, the model is initialized with the current state of the water year and forced with a climatologic ensemble of atmospheric forcing to account for atmospheric uncertainty and natural variability. The simulations result in an ensemble of ensuing water years that are analyzed for subsurface water storage anomalies. The methodology was applied to the water years 2011/2012 and 2018/2019 and showed an increased probability of a significant water deficit in regions that had a water deficit in the previous year. This was also observed in an evaluation simulation. The results were compared to simulations with perfect forcing and uncertain initial conditions, and showed predictability at the interannual timescale and beyond, depending on the strength of the anomaly. The methodology was then applied to 2019/2020 to provide an outlook of the evolution of the current anomalies. The results emphasize the importance of accounting for groundwater dynamics in applied terrestrial models to account for long‐term memory effects in the terrestrial water cycle in forward simulations, over large spatial scales. This method of probabilistic subsurface water storage assessment may provide crucial information to public and industrial sectors for long‐term water resource planning.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
536 _ _ |a ESM Advanced Earth System Modelling Capacity (jibg35_20190501)
|0 G:(DE-Juel1)jibg35_20190501
|c jibg35_20190501
|f ESM Advanced Earth System Modelling Capacity
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Furusho‐Percot, Carina
|0 P:(DE-Juel1)172902
|b 1
700 1 _ |a Goergen, Klaus
|0 P:(DE-Juel1)156253
|b 2
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 3
773 _ _ |a 10.1029/2020WR027828
|g Vol. 57, no. 1
|0 PERI:(DE-600)2029553-4
|n 1
|p 1-17
|t Water resources research
|v 57
|y 2021
|x 1944-7973
856 4 _ |u https://juser.fz-juelich.de/record/889986/files/2020WR027828.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/889986/files/WRR_Hartick_et_al_2020.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889986
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178689
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172902
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156253
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)151405
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
913 0 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Terrestrial Systems: From Observation to Prediction
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2018
|d 2020-09-03
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-09-03
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21