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Zusammenfassung

Der Hippocampus wird mit Verhaltensweisen wie Gedédchtnis und Navigation in Verbindung
gebracht, und ist eine der ersten Gehirnregionen, die bei Erkrankungen wie Alzheimer,
Depression und Angststorungen betroffen ist. Personen, die sich einer hippocampalen
Resektion unterziechen mussten, erleben grofe Schwierigkeiten im Alltag und leiden an
anterograder und retrograder Amnesie. Zu verstehen, wie der Hippocampus aufgebaut ist und
welche Verhaltensweisen mit ihm zusammenhéngen, ist daher von grofiter Bedeutung.
Allerdings ist bis jetzt die Kartierung des Hippocampus, ndmlich die Beschreibung des
Autbaus, auf die zelluldre Ebene beschriankt. Es fehlt eine Beschreibung der Organisation des
Hippocampus auf der Ebene der Netzwerkkonnektivitét, die fiir Riickschliisse auf Verhalten
moglicherweise wichtiger ist, als die zelluldre Ebene.

Mit der Nutzung bildgebender Verfahren und der Methode der ,,Konnektivitits-Basierten-
Parzellierung®™ ist es moglich in-vivo Karten vom Hippocampus iiber eine Vielzahl von
Personen hinweg zu erstellen. Die Methode der Konnektivitdts-Basierten Parzellierung
unterteilt den Hippocampus in Subregionen, die sich in ihren Konnektivititsprofilen
besonders  stark  voneinander  unterscheiden und  deshalb ein  bestimmtes
Differenzierungsmuster aufweisen.

Die vorliegende Arbeit zielte somit darauf ab, den Hippocampus auf der Basis von
funktionaler Konnektivitit und struktureller Kovarianz, zu kartieren. Funktionale
Konnektivitdit wurde entweder meta-analytisch iiber Aufgaben hinweg publizierter
funktionaler Studien  errechnet  oder  unter = Ruhebedingung  mit  dem
Magnetresonanztomographen gemessen. Strukturelle Kovarianz stellt eine relativ junge
Messgrof3e dar, die die Ko-Variationen in der Intensitit der grauen Substanz liber Personen
hinweg misst, und damit Ko-Plastizitdit und Ko-Atrophie abbildet, wenn Gehirnregionen
zusammen wachsen oder degenerieren.

Neben der Kartierung des Hippocampus war ich ebenfalls stark daran interessiert zu
untersuchen, ob sich Differenzierungsmuster innerhalb des Hippocampus im Laufe des
Lebens und bei der Demenzerkrankung verdndern und voneinander unterscheiden lassen.
Hierbei wurden Verdnderungen im Hippocampus basierend auf Verdnderungen in den
strukturellen Kovarianz-Netzwerken betrachtet.

Die Untersuchungen wurden an hunderten von funktionalen und strukturellen bildgebenden
Daten frei zuginglicher Datenbanken durchgefiihrt. Hierbei zeigte sich, dass im Gegensatz

zur zytoarchitektonischen Organisation, die Organisation des Hippocampus basierend auf



funktionaler Konnektivitit eine Differenzierung entlang der anterior-posterior Achse aufwies
mit einer Unterteilung in eine anteriore, mittlere, und posteriore Subregion. Die Organisation
basierend auf struktureller Kovarianz hingegen zeigte vornehmlich eine medial-laterale
Differenzierung in eine anteriore, mediale und laterale Subregion, die der Differenzierung in
Cornu ammonis und Subiculum dhnelte.

Altersbedingte Verdnderungen waren vor allem im posterioren Bereich des Hippocampus zu
finden, wo die laterale Subregion schrumpfte. In der Demenz &hnelte die hippocampale
Organisation allerdings stark einer funktionalen Unterteilung entlang der anterior-posterior
Achse, da die laterale Subregion sich stark in die mediale Richtung ausbreitete und fast den
gesamten hippocampalen Korper bedeckte. Diese Verdnderungen wurden als moglicher
Hinweis darauf interpretiert, dass bei Demenz vor allem funktionale Netzwerke von der
Ausbreitung von Pathogenen wie ,neurofibrillary tangles’ und ,amyloid beta plaques’
betroffen sind und sich dies langerfristig auf die Ko-atrophie des Hippocampus auswirkt.

Um zu verstehen, in welche Verhaltensweisen der Hippocampus involviert ist,
charakterisierte ich sowohl die Subregionen als auch die assoziierten Netzwerke behavioral
unter Verwendung von Datenbanken, die tausende von Aktivierungsstudien archievieren. Die
Ergebnisse legten nahe, dass der anteriore Hippocampus eher in Selbst-zentrierter
Informationsverarbeitung und der posteriore Hippocampus eher in Welt-zentrierter
Informationsverarbeitung involviert ist. Zusitzlich ist zu vermuten, dass basierend auf den
Netzwerken der strukturellen Kovarianz, die mediale Subregion etwas mit der visuell-
motorischen Verarbeitung zu tun hat.

Die vorliegende Arbeit zeigte demnach auf, dass der Hippocampus sowohl eine anterior-
posterior als auch eine medial-laterale Organisation in Abhédngigkeit von der Art der
Netzwerke (funktionale oder strukturelle) aufweist. Strukturelle Netzwerke sind nicht stabil
iiber die Lebensspanne, sondern veridndern sich im Alter und in der Demenzerkrankung und

spiegeln somit unterschiedliche zugrundeliegende Mechanismen wieder.



Abstract

The hippocampus is associated with behaviors such as memory and navigation, and is one of
the first brain regions to be affected in diseases such as Alzheimer's dementia, depression and
anxiety disorders. Patients who have undergone hippocampal resection experience great
difficulties in everyday life and suffer from anterograde and retrograde amnesia.
Understanding how the hippocampus is organized and what behaviors are associated with it,
is therefore of utmost importance. The mapping of the hippocampus, i.e. the description of its
organization, has so far been limited to the cellular level. However, a description of the
organization of the hippocampus at the level of large-scale networks is missing, which may be
more important for drawing conclusions about behavior than the cellular organization.

With the use of imaging techniques and the method of "Connectivity-Based Parcellation", it is
possible to create in-vivo maps of the hippocampus across a large number of participants. The
method of Connectivity-Based Parcellation divides the hippocampus into subregions that
differ particularly strongly in their connectivity profiles and display therefore a specific
differentiation pattern. The present work thus aimed at mapping the hippocampus on the basis
of functional connectivity and structural covariance. Functional connectivity was either
calculated meta-analytically across tasks of published functional studies or measured under
resting state conditions with the magnetic resonance tomography. Structural covariance is a
relatively new measure that estimates the co-variation in grey matter intensities across
individuals and thus maps co-plasticity and co-atrophy as brain regions grow or degenerate
together.

In addition to mapping the hippocampus, I was also strongly interested in investigating
whether differentiation patterns within the hippocampus change over the course of life and in
dementia and whether they can be distinguished from each other. Therefore changes in
hippocampal organization based on alterations in structural covariance networks were studied.
The investigations were carried out on hundreds of functional and structural imaging data
from open accessible databases. In contrast to the cytoarchitectonic organization, the
organization of the hippocampus based on functional connectivity showed a differentiation
along the anterior-posterior axis with a subdivision into an anterior, middle and posterior
subregion. In contrast, the organization based on structural covariance showed a medial-
lateral differentiation into an anterior, medial and lateral subregion similar to the

differentiation into cornu ammonis and subiculum.



Age-related changes were mainly found in the posterior region of the hippocampus, where the
lateral subregion decreased. However, the hippocampal differentiation pattern in dementia
closely resembled a functional division along the anterior-posterior axis, as the lateral
subregion extended strongly in the medial direction and covered almost the entire
hippocampal body. These changes were interpreted as a possible indication that in dementia
functional networks are particularly affected by the spread of pathogens such as
neurofibrillary tangles and amyloid beta plaques and have therefore a long-term effect on the
co-atrophy of the hippocampus.

To understand in which behaviors the hippocampus is involved, I characterized both the
subregions and the associated networks behaviorally using databases that archive thousands
of activation studies. The results suggested that the anterior hippocampus is more involved in
self-centric information processing and the posterior hippocampus more involved in world-
centeric information processing. In addition, it can be assumed that based on the networks of
structural covariance, the medial subregion has something to do with visual-motor processing.
The present work therefore showed that the hippocampus has both an anterior-posterior and a
medial-lateral organization, depending on the type of networks, whether functional or
structural. Structural networks are not stable over the lifespan but change with age and

dementia mirroring different underlying processes.

1 Introduction

Clive Wearing (Wilson, Baddeley, & Kapur, 1995), Henry Molaison (Scoville & Milner,
1957) and Kent Cochrane (Gao et al., 2020) experienced the same symptoms. All three were
unable to store new information and could not built new memories, a symptom described as
anterograde amnesia. Furthermore, they also had difficulty remembering past events,
manifesting a form of retrograde amnesia. All these symptoms were due to damage to or a
resection of a small subcortical brain region, namely the hippocampus.

These men and their clinical history exemplify how important the hippocampus is for human
life. Without this subcortical brain region we would not be able to remember, perceive and
regulate our emotions, or to navigate our environment. Every day would be the same, with us

being stuck in the present, without a past and without a vision of the future. The hippocampus



did not only attract clinicians working with amnestic patients, but also neuroanatomists and
early neuroscientists interested in its organization and its relationship to behavior.

The work leading up to this thesis was especially designed from the perspective of the last
ones tracking hippocampus’ organization and linking it to human behavior. The aim was to
investigate hippocampus’ organization based on different magnet resonance imaging (MRI)
measures and to follow changes in organization patterns across the lifespan and in dementia
populations.

A growing interest in the architecture of the brain and its involvement in human behavior has
guided research for more than 100 years now. The discovery that brain tissue is not
homogenous, but displays micro-anatomical differences, heralded the era of brain mapping, in
which Campbell, Brodmann, Ecomono, Koskinas and the couple Vogt published atlases and
maps of the brain (Katrin Amunts & Zilles, 2015; Catani, Dell'acqua, & Thiebaut de Schotten,
2013). Their two-dimensional drawings helped to understand how the architecture of the brain
looks like and which areas of the brain share a common cellular anatomy.

With the development and introduction of automatic and computerized technology, as well as
the possibilities provided by widespread applications of MRI, brain mapping achieved a new
momentum. Very quickly it turned from ex-vivo histological mapping established on the
brains of a few human beings, to in-vivo mapping of the brains of hundreds of participants.
Today, the architecture of the brain is investigated from different perspectives, at different
resolution levels. Atlases are established on a broad range of markers such as task-based or
task-independent functional connectivity1 (E. M. Gordon et al., 2014; Schaefer et al., 2017;
Yeo et al., 2011), functional and anatomical connections represented together (Fan et al.,
2016), or based on white matter tractography (Catani & Thiebaut de Schotten, 2008)
exemplifying a wide range of features.

In line with these developments, I applied multimodal in-vivo mapping to the hippocampus,
which, as mentioned above, plays an enormous role in human life and whose organization is
primarily known from traditional histological mapping. In this research work, I circumvented
two previous problems. On the one hand, in-vivo brain atlases do not provide a fine-grained
differentiation pattern for individual regions and are additionally mostly lacking for
subcortical brain regions as the hippocampus. On the other hand, even though

cytoarchitectonic differentiation patterns are detailed as they are derived at the spatial

1 Functional connectivity refers to the synchronous blood oxygenation level dependent (BOLD) signal measured
with functional MRI (fMRI) either during the execution of a task or at rest (Biswal, Yetkin, Haughton, & Hyde,
1995). It is not restricted to the neighborhood of spatial related brain regions, but rather descries a correlational
connection between those networks and brain areas that functionally act together.

2 The stratum granulosum of the dentate gyrus is characterized by densely packed granular neurons, which somata is
small and round. Stratum moleculare is thick, contains interneurons, receives fibers from the perforant pathway and
also contains commissural and septal fibers. The polymorphic layer contains few interneurons and axons of granularQ
neurons, which are crossing the layer (Duvernoy, 2013) (p.17).



resolution of micrometers, they are at the same time, established on micro-anatomical features
of cells (e.g. morphology, density etc.) mirroring within hippocampal architecture. But
focusing on a different feature, such as extra-hippocampal connectivity would, however,
complement our current understanding of hippocampus’ organization based on cyto- and
receptor-architecture (K. Amunts et al., 2005; Palomero-Gallagher, Kedo, Mohlberg, Zilles,
& Amunts, 2020) (Fig. 1).
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Figure 1. Hippocampus’ organization at different spatial scales and different features.

The first aim was therefore to reveal hippocampal organization based on hippocampal
connectivity represented in macro-scale networks assessed with different MRI measures such
as functional connectivity and structural co-variation of grey matter intensity. Such an
approach would not only help us to understand how the hippocampus is organized at a higher
spatial scale based on networks, but it would also reveal, which brain regions are related to
the hippocampus.

Since the hippocampus as a brain region displays high plasticity and high vulnerability at the
same time, the second aim was to track changes in the organization of the hippocampus over
the entire lifespan and in dementia pathology reflecting age-related co-plasticity and disease-
related co-atrophy. Since previous histological maps were established on ex-vivo brains, this

would be the first attempt to create ‘non-static’ maps capturing changes of organization.
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A third aim was to bridge the gap between the organization of the hippocampus and its
involvement in specific behavior. Apart from a few exceptions, the investigation of brain’s
biological tissue organization (e.g. mapping using microscopy) and brain’s function (utilizing
e.g. functional MRI while performing a task) remained mostly separate for the last decades. In
this work, we characterized meta-analytically across hundred of studies archived in the

databases of BrainMap (http://www.brainmap.org/) and NeuroSynth (https://neurosynth.org/)

hippocampal differentiation pattern based on functional connectivity on the one hand, and the
associated grey matter co-variation networks on the other hand. Performing such an extensive
behavioral profiling can accelerate our understanding about hippocampus’ behavioral

involvement in healthy and diseased conditions of human life.

The outcomes of this work will enhance our understanding about hippocampal organization at
the macro-scale level as an additional layer to histological mapping. The resulted
hippocampal maps can be used in clinical environment to predict healthy and deviant
hippocampal differentiation patterns, but also in the context of artificial intelligence and data
mining. Using maps that combine voxels containing the same information instead of using all
voxels of the hippocampus can reduce computing resources to simulate hippocampal
organization and functionality. Overall, an in-vivo mapping of the hippocampus based on
large-scale networks would not only complement our understanding but also help the user to
navigate in hippocampal organization and its associated behavior.

To achieve the aims, the method of Connectivity-Based Parcellation (CBP) was applied in
this thesis. It is introduced and explained in the next section, followed by an introduction of

the hippocampus and its accompanying processes and alterations during aging and dementia.

1.1 In-vivo hippocampal mapping and behavioral profiling

The aforementioned aims were accomplished in two studies using CBP, which subdivides
(i.e. parcellates) a region of interest (here the hippocampus as seed region) into subregions.
CBP uses unsupervised learning (i.e. a clustering algorithm) to identify objects (e.g. voxels
within the seed region) that share a common feature and group them either in the same or a
different cluster (e.g. subregion) (S. B. Eickhoff, Thirion, Varoquaux, & Bzdok, 2015). In
contrary to traditional histological mapping, which captures differences in intra-hippocampal
tissue properties, the feature of interest was here extra-hippocampal connectivity, which was

defined statistically using Pearson’s correlation. Connectivity was computed for each voxel in
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the seed region (i.e. hippocampus) to every voxel in the target region (i.e. whole brain grey
matter voxels) characterizing each seed voxel by a unique connectivity profile. Depending on
the (dis)similarity of seed voxels’ connectivity profiles, voxels within the hippocampus were
either clustered together or apart from each other resulting in a certain differentiation pattern
(i.e. parcellations, clustering) (S. B. Eickhoff et al., 2015).

In order to probe multimodality of hippocampal mapping, three different MRI measures (i.e.
modalities) were applied to reveal hippocampal organization from different perspectives. One
of the modalities was task-based meta-analytical connectivity modeling (MACM), which
represents task-dependent functional connectivity. Connectivity was meta-analytically
computed across functional activation studies of the BrainMap database by correlating
activation peaks between seed and target voxels across activation studies. The second
functional modality was task-independent resting-state functional connectivity (RSFC). For
each participant in our sample, connectivity was assessed by correlating the time-series of the
BOLD signal between seed and target voxels, which was recorded while participants were at
rest in the MR-scanner. In contrast to the both functional measures, structural co-variation of
grey matter intensity was derived from anatomical T1 MRI images and measured using
structural covariance. Structural covariance as a proxy for co-plasticity was computed at the
group-level by correlating seed voxel’s grey matter intensity with target voxel’s grey matter
intensity.

The second study exclusively focused on structural covariance to capture co-plasticity
mirroring lifespan changes in healthy populations, whereas in mild cognitive impairment
(MCI) and dementia it represents more likely co-atrophy due to a stronger degeneration
during pathology. Structural covariance represents an interesting and a challenging modality,
partly capturing cell density being able to reflect tissue changes (DeKraker, Ferko, Lau,
Kohler, & Khan, 2018), and partly function related changes (Maguire, Woollett, & Spiers,
2006; Seeley, Crawford, Zhou, Miller, & Greicius, 2009). In either case, it complements our
view on the hippocampus.

In order to bridge the long-lasting gap between organization and behavior, hippocampal
subregions were behaviorally characterized using the databases of BrainMap and NeuroSynth
in study 1. In study 2, however, the associated structural covariance networks of subregions
were characterized to reveal a behavioral profile of underlying large-scale networks. The
advantage of using databases that archive thousands of activation studies instead of
conducting a single experiment, is to combine the knowledge of the last years and thus to

study a broad spectrum of behaviors meta-analytically. Such a broad-based meta-analytical
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analysis is urgently needed, since previous behavioral characterizations have referred to
individual experiments, thus only revealing partial aspects of behavioral involvement of the

hippocampus.

Taken together, studying hippocampus’ organization at the macro-level using multimodal
MRI measures is a promising alternative to micro-anatomical ex-vivo brain mapping based on
cytoarchitecture. CBP is a data-driven in-vivo mapping approach, which reveals an additional
level of organization of the hippocampus yielding its networks. On top, it is possible to track
lifespan changes and pathological alterations, hence, providing non-static maps, which is not
possible with ex-vivo mapping. By revealing hippocampal organization and its associated
networks we can learn which brain regions are associated with the hippocampus, how does
the hippocampus change during healthy aging and which networks and subregions of the
hippocampus are affected most in dementia. This again provides new knowledge about

hippocampus’ associated behavior and new assumptions for future investigations.

1.2 Hippocampus

The hippocampus is one of the evolutionary oldest and most complex brain regions, which
topography is defined at different levels such as macro-anatomy, strata, cells, receptors,
connectivity, genes and function. The hippocampus is involved in a wide range of behavior
ranging from episodic memory to navigation, and if affected in disease its consequences are
tremendous for human life. However, most of our knowledge about the hippocampus is
derived from investigations in rodents, whose hippocampus might substantially differ from
human hippocampus in terms of cellular morphology, connectivity, and receptor- or chemical
topography (Andersen et al., 2007). Therefore, our understanding about rodents’ hippocampus
is well established whereas it is scarce for human hippocampus. As far as neuroanatomical
tracing techniques are not applicable to the human brain in-vivo, our understanding in terms
of hippocampal connectivity and function is limited to the techniques of ex-vivo cartography.

In order to give an insight into the complexity of hippocampal organization I report the
already known differentiation patterns of the hippocampus at the macro-anatomy-, strata-,
cytoarchitecture and behavioral level along the medial-lateral and anterior-posterior

dimensions.
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1.3 Medial-lateral differentiation of the hippocampus

In the last decades, hippocampus’ morphology was mainly examined with the traditional
approach of microscopy of histological stained sections. To do so, the brain was cut along the
horizontal plane in thin 2D coronal slices, which were stained and histologically delineated
into subfields and strata along the medial-lateral and dorsal (superior) —ventral (inferior)
dimensions. The following sections summarize the results and insights that were achieved

about hippocampus’ architecture using the traditional approach of microscopy.

Hippocampal segmentation based on strata and cytoarchitecture

The shape of the hippocampus reminded early neuroanatomists of a sea horse naming this
brain region ‘hippocampus’, which is the Greek word for sea horse. Structurally, the
hippocampus is bilaminar, consisting of the Cornu Ammonis (CA) and dentate gyrus. Both
are separated by the hippocampal sulcus, which usually disappears with development so that
CA and dentate gyrus fuse together being folded into each other (Duvernoy, 2013) (p.15ff),
which reminds of a Swiss role.

Depending on neurons’ morphology and distribution, CA is further divided into CA1-4 (Fig.
2 and 3A). CAl is characterized by pyramidal neurons’ somata, which are triangular and
small, whereas CA2’s pyramidal cells’ somata is ovoid, large and densely packed. The
pyramidal cells of CA3 are similar to those of CA2 but they are less densely packed and
characterized by fine, nonmyelinated fibers, the mossy fibers. CA4, on the other hand,
contains few ovoid, large and scattered somata as well as myelinated fibers (Duvernoy,
2013)(p.15f%).

Some researchers consider CA4 subfield as part of the dentate gyrus, which has a simpler
structure compared to CA consisting of three layers”: stratum moleculare, stratum granulosum
and polymorphic layer. The dentate gyrus with Fascia dentata (stratum granulosum) is a
densely packed band of granular cells and is therefore identifiable as a separated structure
from the CA subfields (K. Amunts et al., 2005).

In addition to cytoarchitectonic differentiation, the CA is also divided into layers or strata,

which are the alveus, stratum oriens, stratum pyramidale, stratum radiatum, stratum

2 The stratum granulosum of the dentate gyrus is characterized by densely packed granular neurons, which somata is
small and round. Stratum moleculare is thick, contains interneurons, receives fibers from the perforant pathway and
also contains commissural and septal fibers. The polymorphic layer contains few interneurons and axons of granular
neurons, which are crossing the layer (Duvernoy, 2013) (p.17).
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lacunosum and stratum moleculare (Fig. 2 and 3; more details are summarized in the

footnote®) (Duvernoy, 2013) (p.15ff).

Alveus
Stratum oriens

_—Stratum pyramidale

Stratum radiatum

-

Stratum lacunosur N
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Lateral Medial

Figure 2. Schematic oversimplified representation of hippocampal strata.

Next to the CA1-4 and dentate gyrus, the subiculum is also considered to be part of the
hippocampal formation since the hippocampus is prolonged by the subiculum considered as
part of the parahippocampal gyrus (Duvernoy, 2013) (p.17). Several studies divide the

subiculum into prosubiculum, presubiculum and parasubiculum (Ricardo Insausti, Mufioz-

3 The alveus of the CA subfields is composed of axons of neurons of the CA and subiculum and represents the efferent
pathway of these structures (Duvernoy, 2013)(p.15). It enters the fimbria, which again enters the fornix projecting to the
limbic structures and being the main output pathway of the hippocampus (Fig. 3 and 4a).

The stratum oriens contains basket cells whereas the stratum pyramidale consists of pyramidal neurons, which partly reach
the contralateral hippocampus. The axons of the pyramidal neurons project back to the stratum radiatum and reach other
pyramidal neurons (Duvernoy, 2013) (p.15ff). The stratum radiatum contains the apical dendrites of pyramidal neurons and
receives information through Schaffer collaterals, from fibers of the septal nuclei and commissural fibers. The stratum
lacunosum consists of axons of the perforant fibers and Schaffer collaterals. The stratum moleculare contains the branches
of apical dendrites of pyramidal neurons, which reach all layers of the CA (Duvernoy, 2013) (p.15ff).

In the dentate gyrus the stratum granulosum consists of somata of granular neurons. One part of the stratum moleculare
receives fibers from the perforant pathway and another part is overlaid with commissural and septal fibers. The
polymorphic layer contains few interneurons, and combines granular layer with CA4 and axons of granular neurons pass by
(Duvernoy, 2013)(p.15ff).
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Lopez, Insausti, & Artacho-Pérula, 2017) and propose to add those to the hippocampal
formation (Kedo et al., 2016). The subiculum, which pyramidal axons were perceived as
output of the hippocampus and which receives input from entorhinal cortex and CAl, has
been treated rather poorly in the past (Naber & Witter, 1998) so that further investigations are
needed.

All in all, the most likely differentiation pattern, that is used in the literature to study the
hippocampus, is the differentiation into CA1-4, dentate gyrus and subiculum (K. Amunts et
al., 2005; Ding & Van Hoesen, 2015). In contrast to this histological differentiation pattern
along the medial-lateral and ventral-dorsal dimension a distinction along the anterior-posterior

dimension was suggested and is introduced in the next section.
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Figure 3. Hippocampus organization based on layers and cytoarchitecture in 2D and 3D. GD
= dentate gyrus, CA=cornu ammonis. A) Reproduced based on Duvernoy (2013) B) Adapted
from R. S. C. Amaral et al. (2018) with the permission from Elsevier.

1.4 Anterior-posterior differentiation of the hippocampus

In addition to histological mapping, increasing advancements in electroencephalography as
well as MRI promoted an additional differentiation pattern of the hippocampus along the
longitudinal axis. However, this organization pattern has been insufficiently researched to
date, so that I briefly discuss the scientific basis on which an assumption about longitudinal

differentiation pattern in the hippocampus can be made.

1.4.1 Segmentation based on macro-anatomy

The hippocampus is curved around the mesencephalon, and can be broadly divided into three
segments, which are the head (anterior) with digitations, body (middle) and tail (posterior)
subregions (Fig. 4) (Duvernoy, 2013)(p. 6). However, no standard convention for this division
exists, but segmentation is mostly performed according to subjective evaluation. Poppenk,
Evensmoen, Moscovitch, and Nadel (2013) proposed to use the uncal apex (y = -21 mm in
MNI) as a standard landmark to delineate head from body. But no clear anatomical landmark
to identify unambiguously the border between body and tail was proposed so far.

Other procedures simply segment the hippocampus into three parts of equal size, whereas
others use a more refined schemes, for example 35% as head, 45% as body, and 25% as tail
(Poppenk et al., 2013). In sum, rather vague and subjective segmentations were performed to
divide the hippocampus macro-anatomically into head, body and tail. Independent of macro-
anatomy, it was also suggested that head-body-tail subregions are supported by divergent

connectivity profiles and behavioral meaning, which is discussed in the next section.
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Figure 4. Head-body-tail segmentation of the hippocampus.

1.4.2 Connectivity along the longitudinal axis of the hippocampus

The hippocampus is suggested to be subdivided into head, body and tail because of divergent
extra-hippocampal connectivity underlying those subregions.

Resting state functional and structural connectivity indicated that the anterior hippocampus is
connected to the perirhinal cortex, amygdala, nucleus accumbens, hypothalamus, anterior
cingulate cortex, temporal pole, anterior medial temporal lobe, orbitofrontal cortex and
ventromedial prefrontal cortex. In contrast, the posterior hippocampus is suggested to be
connected to parahippocampal cortex, retrosplenial and posterior cingulate cortices, medial
and lateral parietal cortex, brainstem with raphe nuclei, as well as mammillary bodies (Adnan
et al., 2016; Boedhoe et al., 2017; Fanselow & Dong, 2010; Kahn, Andrews-Hanna, Vincent,
Snyder, & Buckner, 2008; Libby, Ekstrom, Ragland, & Ranganath, 2012; Poppenk &
Moscovitch, 2011; Wagner et al., 2016). The intermediate subregion of the hippocampus
remains poorly characterized and shares a connectivity pattern partly similar to the posterior
and partly to the anterior hippocampal subregion’s profiles (Qin et al., 2016).

Moreover, increasing evidence from studies even highlights the possibility that connectivity is
organized in a gradient like fashion along the anterior-posterior axis in non-human primates
(R. Insausti & Munoz, 2001) and in humans (Beaujoin et al., 2018; Qin et al., 2016).

But not only extra-hippocampal connectivity but also intra-hippocampal connectivity within
the hippocampus seems to follow the same gradient along the longitudinal axis. Subfields in
the anterior subregion are more likely to be connected to each other than to subfields in the
posterior subregion, found in both functional and anatomical connectivity (Beaujoin et al.,

2018; Dalton, McCormick, & Maguire, 2019).
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All these findings propose that hippocampal organization into anterior-middle-posterior
subregions are supported by extra-hippocampal connectivity organized along the anterior-

posterior dimension.

1.4.3 Behavioral differentiation of the hippocampus along the longitudinal axis

The hippocampus is considered to be functionally heterogeneous along the longitudinal axis.
Accordingly, it was suggested that the anterior and posterior hippocampus are involved in
different behavior because of divergent connectivity profiles underlying these subregions
along the longitudinal axis.
M. B. Moser and Moser (1998) suggested a functional differentiation of the rodent
hippocampus into ventral, middle and dorsal subregions (equivalent to the anterior-head,
middle-body and posterior-tail subregions® in humans) similar to the macro-anatomical
segmentation. While the dorsal (i.e. posterior) subregion was suggested to process sensory
information and is involved in navigation, the ventral (i.e. anterior) subregion is less
behaviorally characterized except for its involvement in emotion processing (Fanselow &
Dong, 2010; M. B. Moser & Moser, 1998).
In humans a similar tripartite organization pattern into head, body and tail, was found along
the longitudinal axis suggesting divergent behavioral involvement (Fanselow & Dong, 2010;
Poppenk et al., 2013; Poppenk & Moscovitch, 2011). Single experiment studies proposed
several theories to capture the specificity of behavior along the anterior-posterior dimension:

¢ vestibular-visual (Hufner et al., 2011),

* imagination-perception (Zeidman & Maguire, 2016),

* context coding-spatial behavior (Nadel, Hoscheidt, & Ryan, 2013),

* novelty-familiarity (Zeidman & Maguire, 2016),

* recent (vividness) - remote memories (Gilboa, Winocur, Grady, Hevenor, &

Moscovitch, 2004),
¢ episodic memory-navigation (Kithn & Gallinat, 2014),
¢ episodic memory: multi-event narratives (anterior), comprehensive (middle) detailed
(posterior) (Collin, Milivojevic, & Doeller, 2015),
e abstraction-individual memory (Bowman & Zeithamova, 2018; Morton, Sherrill, &

Preston, 2017; Schlichting, Mumford, & Preston, 2015),

4 Referred in this study as the functional tripartite model.
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* emotion-cognition (M. B. Moser & Moser, 1998),
* encoding-retrieval (H. Kim, 2015; Lepage, Habib, & Tulving, 1998),
* pattern integration — pattern separation (Morton et al., 2017; Zeidman & Maguire,

2016).

All these descriptions have in common that they were derived from individual experiments
testing specific hypotheses. What is rather missing is an overarching view on the
hippocampus and its behavioral involvement supported by a broad range of experiments.
Robinson, Salibi, and Deshpande (2016) made such an attempt and created a behavioral map
of the hippocampus along the longitudinal axis using the behavioral domains of BrainMap.
According to their results, both, the anterior and posterior hippocampus, are involved in a
wide range of behavior such as action, cognition, emotion, interoception and perception.
While this characterization stresses hippocampus’ functional diversity, it also shows a low
functional specificity so far, which might be related to BrainMap’s categorization system
using broad behavioral domains.

All in all, these studies indicate behavioral heterogeneity along the anterior-posterior axis of
the hippocampus in animals and humans. But they also raise the question, whether a more
fine-grained behavioral characterization is evident for humans’ hippocampus along the

longitudinal axis derived from meta-analytical analyses rather than single experiments.

In addition to behavioral characterization, previous maps were not able to demonstrate
changes in hippocampal maps due to aging and dementia. Since the hippocampus undergoes a
variety of alterations during these processes, the question whether hippocampal maps stay
stable or not was never addressed before. The next sections therefore describe changes that
were associated with the hippocampus during aging and dementia, and summarize briefly the

results of previous studies.

1.5 Hippocampal changes in aging and dementia

During aging, the hippocampus undergoes changes in synaptic plasticity, neurovasculature,
neuroinflammation, protein folding and aggregation (Bettio, Rajendran, & Gil-Mohapel,
2017). On top, hippocampus’ volume declines and cortical thinning in the temporal lobe can
be detected (C. Chang et al., 2018; Fjell, McEvoy, Holland, Dale, & Walhovd, 2014; Fraser,
Shaw, & Cherbuin, 2015; Sowell et al., 2003; Yang et al., 2016; Yao et al., 2012). The origins
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and the underlying mechanisms of volume loss are still unclear but are generally attributed to
reduced neurogenesis and neuronal regression as fewer new cells emerge and consequently
fewer cells mature into neurons (Bettio et al., 2017; Lazic, 2012). A decrease in the number of
dendritic spines and synapses was also discussed as potentially responsible influence on
atrophy (Adams et al., 2008; Bettio et al., 2017).

Some processes accompanying aging are so severe that it is assumed to be a risk factor for
Alzheimer’s disease. Aging causes metabolic modifications in the amyloid precursor protein,
which leads to an accumulation of amyloid-beta plaques, which again triggers the
accumulation of neurofibrillary tangles resulting in a loss of synapses, neurons and axons
(Metzler-Baddeley et al., 2019). Another scenario assumes that during aging, damage of
neuroglia occurs and impairs myelination and microglia-mediated clearance so that
neuroinflammation is triggered. Independent of which scenario is true, abnormal metabolism
leads to neuronal death (Metzler-Baddeley et al., 2019).

In dementia and Alzheimer’s disease the distribution of amyloid plaques and tau
neurofibrillary tangles’, which are assumed to be responsible for neuronal loss in entorhinal
cortex and the hippocampus (Franko & Joly, 2013), is very prominent and characteristic for
the disease (Braak & Braak, 1991; Franzmeier et al., 2019). Amyloid plaques are
predominantly distributed in the temporal (medial) lobe (Thal et al., 2000) whereas tau
pathology starts in the locus coeruleus and entorhinal cortex spreading to the hippocampus,
anterior frontal and posterior parietal cortex before afflicting the whole brain (Franzmeier et
al., 2019). Studies show that soluble amyloid-beta and less the amyloid plaques influence the
dendritic spine, synaptic and neuronal loss determining cognitive dysfunction (Jack et al.,
2008; Montembeault, Rouleau, Provost, & Brambati, 2016; J. C. Morris et al., 2009; Walsh &
Selkoe, 2007).

Interestingly, not only dementia patients, but also clinically normal elderly accumulate
amyloid-beta and tau pathologies, which, if phosphorylated, misfolds and aggregates forming
neurofibrillary tangles, in the hippocampus and entorhinal cortex (Sperling et al., 2019;
Ziontz et al., 2019). Higher amyloid-beta is associated with higher tau pathology, and both are
associated with higher memory decline (Sperling et al., 2019). However, cognitive decline is
not always present even in a profound distribution of neurofibrillary tangles as shown in
individuals above 70 years (Ziontz et al., 2019), questioning a direct relationship between

cognitive decline and the accumulation of pathogens.

5 Amyloid plaques and tau neurofibrillary tangles are proteins, which accumulate outside and inside of neurons
during aging and Alzheimer’s disease.
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All these processes seem to lead to the prominent effect of atrophy, which was extensively
studied in the hippocampus in aging and dementia populations using either the subfield model
(CA1-4, dentate gyrus, subiculum) or the functional tripartite model (head-body-tail), which I
summarized in Table 1 and 2.

It is noteworthy that the functional tripartite model is underrepresented in dementia research,
so that no clear conclusion can be derived about volume reduction along the longitudinal axis.
By visual inspection, Table 1 and 2 indicate that overall, studies demonstrate high
inconsistencies in localization of highest atrophy in the hippocampus. In MCI and dementia,
CA1 and subiculum seem to be more atrophied compared to other subfields. But the same
pattern of results was also found in aging, which casts doubt on the specificity of atrophy
related to dementia. Additionally, CA1 and subiculum are the largest subfields, which might
have facilitated to find atrophy there with the technique of low resolution MRI compared to
smaller subfields.

In this thesis, however, no assumptions about any hippocampus models were made meaning
that differentiation patterns were derived with the data driven approach of CBP. In addition, I
did not measure the absolute atrophy of the hippocampus but used the MRI modality of
structural covariance assessing the co-variation of hippocampal grey matter intensity with the
whole brain in a sample. Therefore structural covariance was an indirect measure of co-
atrophy in the group of MCI and dementia patients since mutual degradation of the
hippocampus with other brain regions is more prominent in pathological conditions than in
the group of healthy elderly. In contrary, we assumed that structural covariance in aging
would more likely mirror co-plasticity on top of co-atrophy as healthy aged brains are more

preserved.

Table 1. Volume reduction of hippocampus’ subfields and subregions in aging

study subfields subregions
(Raz, Ghisletta, Rodrigue, Kennedy,  hippocampus (not /
& Lindenberger, 2010) specified)
(Raz et al., 2005) Hippocampus (not /
specified)
(S. G. Mueller & Weiner, 2009) CAl, CA3&DG /
(La Joie et al., 2010) subiculum /
(Frisoni et al., 2008) CA1, presubiculum head, tail, body
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(Chen, Chuah, Sim, & Chee, 2010)
(Rajah, Kromas, Han, & Pruessner,
2010)

(Taetal., 2012)

(Driscoll et al., 2003)

(Kalpouzos et al., 2009)

(Malykhin, Bouchard, Camicioli, &
Coupland, 2008)

(B. A. Gordon, Blazey, Benzinger, &
Head, 2013)

(Lowe et al., 2019)

(Pruessner, Collins, Pruessner, &
Evans, 2001)

(Malykhin, Huang, Hrybouski, &
Olsen, 2017)

(Lupien et al., 2007)

(Sullivan, Marsh, & Pfefferbaum,
2005)
(Schuff et al., 1999)

(Sullivan, Marsh, Mathalon, Lim, &
Pfefferbaum, 1995)

(Daugherty, Bender, Raz, & Ofen,
2016)

(S. G. Mueller et al., 2007)

(Pereira et al., 2014)

Dentate gyrus, subiculum

No difference in whole
hippocampus

No age effects on volume
Whole hippocampus (not
differentiated)

No age effects on volume

CAl1-2

CAl
CA2-3, CA4-DG

head
head, body

anterior and posterior
(body and tail)
posterior

posterior

head> body>tail

head, body

posterior

head, tail

body

Table 2. Volume reduction of hippocampus’ subfields and subregions in MCI and dementia

study subfields subregions
(Pievani et al., 2011) CA1, subiculum /
(West, Coleman, Flood, & CA1, subiculum /
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Troncoso, 1994)

(Price et al., 2001)
(Fouquet et al., 2012)

(S. G. Mueller & Weiner,
2009)

(Susanne G. Mueller et al.,
2010)

(LaJoie et al., 2013)

(L. G. Apostolova et al.,
2006)

(Apostolova et al., 2010)
(L. Wang et al., 2006)
(Chetelat et al., 2008)
(Yassa et al., 2010)
(Atienza et al., 2011)
(Frisoni et al., 2006)
(Frisoni et al., 2008)
(Gemmell et al., 2012)
(Hanseeuw et al., 2011)
(Lindberg et al., 2012)
(Pluta, Yushkevich, Das, &
Wolk, 2012)

(Rossler, Zarski, Bohl, &
Ohm, 2002)

(Shi, Liu, Zhou, Yu, & Jiang,
2009)

(L. Wang et al., 2003)

(West et al., 1994)
(Bobinski et al., 1995)
(Bobinski et al., 1997)

(Csernansky et al., 2000)
(Csernansky et al., 2005)

CAl
CAl
CAl, CA1-2, subiculum

CAl, CA1-2, subiculum

CAl
CAl, CA2, CA3

CAl, subiculum, CA2-3
CA1, subiculum
hippocampus (not specified)
CAl, CA3/DG
CA1-3,DG

CA1, subiculum

CAl

CAl

CA2-3, subiculum
CA1, subiculum

CAl

CA1, subiculum (neuronal
loss)

hippocampus (not specified)

subiculum

CA1 (neuronal loss)
CA1-3, subiculum

CA1, subiculum (neuronal
loss)

CAl

CAl

~ T~ T~ ~ ~ ~

body, tail, head
/

/

/

head, tail

head, lateral body (shape
analysis)

/

/

/
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(Adachi et al., 2003) CA1, subiculum /
(Hyman, Van Hoesen, subiculum /

Damasio, & Barnes, 1984)

(Jack et al., 1997) Hippocampus (not specified) /
(B. A. Gordon et al., 2013) / head
(Kesslak, Nalcioglu, & Hippocampus (not specified) /

Cotman, 1991)

(Laakso, Lehtovirta, Hippocampus (not specified) /
Partanen, Riekkinen, &

Soininen, 2000)

(S. G. Mueller et al., 2007) CA1, subiculum /

1.6 Aims

In this thesis three overarching questions were addressed in two studies. First, how is the
hippocampus organized based on large-scale networks assessed with different MRI measures?
Second, does the differentiation pattern within the hippocampus change across the lifespan, in
MCI and in dementia pathology? Third, which behavior is associated with the hippocampus
and its associated networks?

Study 1: While most hippocampal differentiation schemas were derived from histology
revealing a differentiation pattern along the medial-lateral dimension, a hippocampal map
based on large-scale networks was lacking. To fill this gap and to reveal hippocampal
organization from different perspectives, multimodal MRI measures such as task-(un)related
functional connectivity and structural covariance as complementary windows into
hippocampal organization were used. Since previous studies on functional measures indicated
a differentiation pattern along the longitudinal axis, we hypothesized to find a similar
organization along the anterior-posterior axis on the basis of functional connectivity in the
human hippocampus. Moreover, we expected higher convergence between maps of both
functional connectivity measures (i.e. MACM and RSFC) compared to structural covariance.
The first study therefore served to explore and to describe convergent and divergent
hippocampal maps derived from heterogeneous MRI measures. On top, hippocampal
organization was linked to human behavior by analyzing meta-analytically the association
between hippocampal subregions revealed in the first step and behavioral concepts across

activation studies of the databases of BrainMap and NeuroSynth.
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Study 2: The second study was devoted to investigate whether hippocampal differentiation
patterns change in aging and dementia. The question was whether hippocampal maps stay
stable or not. The study was performed on one modality namely structural covariance, which
was disregarded so far in the scientific field. Structural covariance is supposed to reflect both
co-plasticity in healthy and co-atrophy in pathological conditions as it measures the co-
variation of grey matter intensities between brain regions mirroring both mutual co-
preservation in aging and co-degeneration in dementia. As structural covariance reflects co-
dependencies between brain regions it might be more sensitive to subtle changes, which
would not be captured by measuring solely atrophy. To follow up on the behavioral
characterization of the first study, the age and disease dependent underlying networks of
hippocampal subregions were behaviorally characterized with NeuroSynth in order to infer

from networks to behavior.
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Abstract: The hippocampus displays a complex organization and function that is perturbed in
many neuropathologies. Histological work revealed a complex arrangement of subfields along
the medial-lateral and the ventral-dorsal dimension, which contrasts with the anterior-
posterior functional differentiation. The variety of maps has raised the need for an integrative
multimodal view. We applied connectivity-based parcellation to 1) intrinsic connectivity 2)
task-based connectivity and 3) structural covariance, as complementary windows into
structural and functional differentiation of the hippocampus. Strikingly, while functional
properties (i.e., intrinsic and task-based) revealed similar partitions dominated by an anterior-
posterior organization, structural covariance exhibited a hybrid pattern reflecting both
functional and cytoarchitectonic subdivision. Capitalizing on the consistency of functional
parcellations, we defined robust functional maps at different levels of partitions, which are
openly available for the scientific community. Our functional maps demonstrated a head-body
and tail partition, subdivided along the anterior-posterior and medial-lateral axis. Behavioral
profiling of these fine partitions based on activation data indicated an emotion-cognition
gradient along the anterior-posterior axis and additionally suggested a self-world centric
gradient supporting the role of the hippocampus in the construction of abstract representations

for spatial navigation and episodic memory.

Keywords: anterior-posterior, gradient, medial temporal lobe, structural covariance, map.
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1 Introduction

The hippocampus is involved in a variety of tasks ranging from memory, learning, navigation
and emotion (Fanselow & Dong, 2010; M. B. Moser & Moser, 1998; Poppenk et al., 2013;
Prince, Daselaar, & Cabeza, 2005; Strange, Witter, Lein, & Moser, 2014). However, an
integrative conceptual framework is currently lacking to account for this diversity of
behavioral findings. To progress in that direction, first, a better understanding of the
hippocampus’ organization and function is crucially needed to shed light on its role in a range
of behavioral aspects and second, a common generic map would be highly useful to further
support cross-studies comparison and integration.

As far, two opposing organizational patterns were introduced in the past. The first mapping
based on cytoarchitecture has evidenced a subdivision into subfields (CA1-4, dentate gyrus,
subiculum) along the medial-lateral and ventro-dorsal axes as illustrated in Figure 1, Amunts
et al. 2005). In parallel to this organization, an organization into subregions (head, body, tail)
along the anterior-posterior (longitudinal) axis (Moser & Moser 1998; Lepage et al. 1998;
Fanselow & Dong 2010; Poppenk et al. 2013; Strange, et al. 2014) commonly emerged across
a variety of in-vivo approaches such as electrophysiology (Komorowski et al. 2013) and
connectivity-based parcellation (CBP) (see Figure 1,(K. Amunts et al., 2005; Chase et al.,
2015; Robinson et al., 2015)).

In line with the histological work and despite evidence of functional anterior-posterior
differences, many in-vivo and ex-vivo studies in the human hippocampus used a-priori
segmentation into subfields based on either an automated or a manually delineation in the
anatomical MRI scans (see Figure 1, (Adler et al., 2014; Adler et al., 2018; de Flores, La
Joie, & Chetelat, 2015). Such segmentation into subfields has the advantage of using the
histological “ground truth” as an a-priori representation, but has the disadvantage of
neglecting higher order features, such as the rich long-range connectivity of the hippocampus,
which contributes to its functional organization. Thus, the knowledge from this one-sided
perspective should be complemented by a CBP approach, which now allows the combination
of different MRI measurements within the whole hippocampus hence potentially probing
different aspects of its organization.

CBP is an in-vivo brain-mapping method that characterizes the organization of the brain based
on connectivity estimates, usually derived from MRI (S. B. Eickhoff, Yeo, T., Genon, S., in
press). CBP can be applied on any estimates of connectivity from MRI data (functional or

structural) with different types of connectivity measurements being usually referred to as
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different CBP-modalities. Across the previous years, evidence have been brought that CBP
can capture organizational aspects that were previously revealed by tracing studies, as well as
by histological work (Behrens et al., 2003; Lambert, Simon, Colman, & Barrick, 2017).
Additionally, CBP was shown to be sensitive to functional distinction, for example,
replicating the supplementary motor area (SMA) and pre-SMA differentiation evidenced by
functional signal during task (Johansen-Berg et al., 2004). Hence this approach appears to
identify regional differentiation supported by local microarchitecture, connectivity and local
functional signal to some extent.

In the present study, we focused on the functional connectivity between hippocampus’ voxels
and all grey matter voxels. In other words, we examined long-range (whole brain)
connectivity by computing for every hippocampal voxel its individual connectivity fingerprint
with all other grey matter voxels. Based on the (dis-)similarity of connectivity fingerprints the
voxels were clustered into either same or different partitions. CBP has the advantage to be
model-free and unsupervised hence offering maps that optimally represent the data at hand. It
has already been used in previous studies to examine hippocampal organization. Nevertheless,
previous work focused mainly on a single CBP modality, either structural connectivity
(Adnan et al., 2016) or meta-analytic connectivity modeling (MACM) (Chase et al., 2015;
Robinson et al., 2015; Robinson et al., 2016). Examining structural connectivity, Adnan et al.
(2016) proposed a bipartite anterior-posterior subdivision of the hippocampus, which
contrasted with MACM parcellations revealing a more detailed architecture. This latter
modality yielded a three-part organization for the left hippocampus and a 5-partite structure
for the right hippocampus along the anterior-posterior axis (Robinson et al., 2015; Robinson
et al., 2016), while the subiculum subfield was subdivided into five modules (Chase et al.,
2015). In sum, uni-modal CBP has thus far provided evidence for an anterior-posterior
organization of the hippocampus, but at different levels of partition across studies and even
across hemispheres. This variety of partition schemes hinders a deep investigation of the
functional relevance of the anterior-posterior differentiation, and also complicates the study of
hippocampus dysfunction in brain pathology.

In this latter perspective, a common set of maps of the hippocampus for MRI investigation
would be highly useful. Across the previous years, one major avenue of neuroimaging
research of brain pathology has developed from phenotype (such as cognitive performance or
symptoms) prediction approaches based on multivariate pattern analyses applied to large-
scale clinical datasets (Zhang et al., 2016). In this promising avenue of research, individual

voxels have to be compressed into homogeneous subregions in which the measurements (e.g.
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fMRI signal) can be summarized. This compression is most of the time required not only for
computational purposes, but also for post-hoc investigations of subregions contributing to the
predictions. In this framework, the compression should be based on robustly defined maps
that would represent a universal framework for comparison and integration of results across
studies.

In this study, we investigated hippocampal functional organization using a multimodal CBP
approach to generate robust functional hippocampal maps based on hippocampus - whole-
brain connectivity profiles (S. B. Eickhoff et al., 2015; S. B. Eickhoff, Yeo, T., Genon, S., in
press). To do so, we focused on two purely functional modalities: MACM-CBP and resting-
state functional connectivity (RSFC-CBP). Despite showing convergence (Reid et al., 2016)
and being conceptually related, these two modalities are based on very different types of data
and methods. MACM reflects functional organization during task and is computed from
whole-brain co-activation peaks in activation databases such as BrainMap. For each
hippocampal voxel we obtained a whole-brain co-activation profile. RSFC, on the other hand,
reflects the functional connectivity estimated in the unconstrained function of the brain and is
computed at the subject-level. For each individual hippocampal voxel we obtained its
functional connectivity profile to all the other grey matter voxels in the brain. RSFC is based
on resting state functional MRI (RS-fMRI), which is known to be prone to noise due to
various artifacts (Power, Schlaggar, & Petersen, 2015; Satterthwaite et al., 2017; Satterthwaite
et al., 2013; Van Dijk, Sabuncu, & Buckner, 2012), but the choice of an optimal denoising
strategy has remained relatively unexplored in the particular framework of CBP. For that
reason, as a preliminary step in the present study, we performed a systematic evaluation of
different denoising methods in order to favor stable partitions with high biological validity for
RSFC-CBP. We aimed to generate a functional subdivision of the hippocampus that would be
stable across subjects and CBP modalities offering a representation that would be optimal for
any type of functional signal (such as task-based fMRI activations, RS-fMRI or PET).
Nevertheless, to complement this purely functional parcellation and to start building a
scientific bridge with previous structural mapping modalities, we additionally examined the
subdivision of the hippocampus based on structural covariance (SC-CBP), which represents
on group-level the co-variation of hippocampal voxels with all the other brain voxels. SC
stands at an ambiguous place in the mapping approaches. On one hand, it is assumed to reflect
functional dependencies between regions through synchronous firing of neurons reflecting
functional neuroplasticity (Alexander-Bloch, Raznahan, Bullmore, & Giedd, 2013; Evans,

2013). Accordingly, SC and RSFC are conceptually related to each other (Kotkowski, Price,
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Mickle Fox, Vanasse, & Fox, 2018), as indicated by structural changes through function
(Seeley et al., 2009) although both are technically two distinct modalities. However, on the
other hand, SC is based on structural changes (Alexander-Bloch et al., 2013; Mechelli,
Friston, Frackowiak, & Price, 2005) and thus should be influenced by the underlying
structural organization like gene expression during neurodevelopment and direct structural
connectivity through monosynaptic connection as indicated in a recent rodent study (Yee et
al., 2017). In sum, SC is assumed to reflect common influences of certain factors on
microstructure be it synaptogenesis based on functional synchronous firing, connectivity as
direct monosynaptic connection, or gene expression in synapses development. Therefore, we
expected that SC-CBP would to some extent confirm functional organization, and
additionally, provide anatomical information conveyed in brain structure to complement our
understanding of the hippocampal functional topography and provide an alternative map for

studies capitalizing on structural MRI data.

Ex-vivo mapping: from In-vivo mapping: MRI
histology to probabilistic segmentation of histological
subfields

B ca1

) cA23-4/GD

Subiculum

Chetelat et al. (2008)

In-vivo mapping: MACM-

CBP
Anterior
Subiculum R1
CA1
rR2\_AR3
CA2
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Figure 1. Hippocampal mapping based on histology, structural MRI segmentation, and

CBP method. (Images reproduced with permission from publishers.)
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Our final objective was to characterize the obtained cross-modal functional maps in terms of
associated behavioral functions via a quantitative approach of activation studies (e.g., using
the BrainMap or NeuroSynth databases). Importantly, our conceptual objective here was not
to identify specific behavioral functions segregated into different subregions of the
hippocampus, but rather to assess the functional relevance and integration of the organization
pattern in terms of cognitive information processing. Several hypotheses have been proposed
in the past to describe the anterior-posterior differentiation in terms of psychological
functions. But these hypotheses usually pertain to a specific psychological or neuroscientific
research domain and hence could not account for pluripotency of the engagement of the
hippocampus across psychological domains. As far, two main hypotheses derived from
psychological ontologies have been proposed in that regard: an emotional-cognitive
dimension (M. B. Moser & Moser, 1998) and an encoding-retrieval dimension (H. Kim, 2015;
Lepage et al., 1998; Prince et al., 2005). Further investigations have proposed a novelty-
familiarity (Strange, Fletcher, Henson, Friston, & Dolan, 1999) and an imagination-
perception differentiation along the anterior-posterior axis (Zeidman & Maguire, 2016).
However, a common framework accounting for the relevance of the organization of the
hippocampus across domains of human behavior is still lacking. The current study aimed to
fill this gap by performing behavioral profiling (Genon, Reid, Langner, Amunts, & Eickhoff,
2018b) of hippocampus subregions using thousands of activation studies collected across two
different databases using different behavioral taxonomies. Such a quantitative approach offers

an overview, which can be used as a starting point to build an integrative theory.

Thus, the objectives of the present study were two-fold 1) a conceptual objective of
understanding hippocampal organization as revealed across different neurobiological
properties and its relevance in terms of cognitive information processing, and 2) a mapping
objective to provide robust and fine-grained partitions of the hippocampus. While current
high-level parcellations (M. F. Glasser et al., 2016; Schaefer et al., 2017) have focused on the
cerebral cortex they neglected crucial subcortical structures. A consensual robust map of the
bilateral hippocampus is still missing which in turn can help to study its structure and function
across the lifespan as well as in disease. Our study was designed to offer such partitions and
their patterns of associations with behavioral functions. These resources are openly available

to the scientific community via ANIMA database (http://anima.fz-juelich.de/).
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2 Materials and Methods

The bilateral hippocampi were parcellated using different connectivity modalities. Task-based
connectivity was examined with MACM performed on reported activation peaks across
paradigms in the BrainMap database. RSFC-CBP was performed at the subject level for a
sample of participants from the Human Connectome Project (HCP) while SC-CBP was
performed at the group level using the structural MRI data of the same HCP sample (Smith et
al., 2013; Ugurbil et al., 2013). The main methodological differences between these two CBP
modalities are illustrated in Supplemental Material Methods 1.5.

After computing parcellations for each modality, we established a functional map of the
hippocampus by merging the functional parcellations (i.e. RSFC and MACM, that showed the
highest convergence) into one hippocampal map, hence representing a cross-modal consensus
map. Finally, we characterized our cross-modal consensus map at high granularity with

regards to behavioral functions using BrainMap and NeuroSynth databases.

2.1 Volume of interest

We defined our VOI as a consortium of the cytoarchitectonic maps, available in the SPM

Anatomy Toolbox 2.0 (S. B. Eickhoff et al., 2005), and the macro anatomically-defined
Harvard-Oxford Structural Probability Atlas (http:/neuro.imm.dtu.dk/wiki/Harvard-

Oxford Atlas) (Desikan et al., 2006). The hippocampal formation included the following
subfields: CA1-3, dentate gyrus and subiculum. The total number of voxels in a 2 mm x 2 mm
X 2 mm space in the right hippocampus was 865 (6920 mm®) and that of the left hippocampus
was 831 (6648 mm®) voxels.

2.2 Sample

The sample was obtained from the longitudinal study of the Human Connectome Project (Van
Essen & Ugurbil, 2012) representing one of the best openly accessible MRI datasets. We
included unrelated participants in order to avoid heritability effects. The sample consisted of
n = 323 young adults (age: 22-37 years, mean age: 28.2 years, 50.7% females). All
participants gave their written statement of agreement, and the analyses of the data were

approved by the ethical committee of the Heinrich Heine University Diisseldorf.
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2.3 MRI measurements

Structural MRI. All scans were acquired on a 3T MRI scanner of Siemens Skyra (Siemens
AG, Erlangen, Germany) with a 32-channel coil (Van Essen & Ugurbil, 2012). The 3D
structural T1-weighted MRI scans were performed with a MPRAGE sequence (256 sagittal
slices in a single slab, 7R = 2400 ms, TE = 2.14 ms, TI = 1000 ms, FoV = 224 x 224 mm, flip
angle = 8, voxel size = 0.7 x 0.7 x 0.7 mm”). Preprocessing of the MRI data was performed
with SPMS8 (Statistical Parametric Mapping) and the VBMS toolbox, running on Matlab
R2014a. Structural images were normalized with the DARTEL algorithm to the ICBM-152
template using both affine and non-linear spatial normalization. Images were bias-field
corrected and segmented into grey matter, white matter, and cerebrospinal fluid tissues. The
grey matter segments were then modulated for non-linear transformations only and

subsequently smoothed with an isotropic Gaussian kernel (full-width-half-maximum = 8).

Resting-state functional MRI. The acquisition of resting state fMRI with opposite phase
encoding directions (L/R and R/L) was performed with an EPI sequence for a duration of 30
min (eyes open and fixated on a hair cross), 72 slices covering the whole brain (7R = 720 ms,
using a multiband factor of 8, 7E = 33 ms, FoV = 208 x 180 mm, flip angle = 52, voxel
resolution = 2 x 2 x 2 mm’ (Smith et al., 2013; Ugurbil et al., 2013). During pre-processing
we corrected for movements by affine two-pass registration and aligned the images to the first
volume and to the mean of the volumes. Variance explained by six motion parameters from
the realignment and their first derivatives were regressed out. Spatial normalization to the
Montreal Neurological Institute (MNI) was carried out for the average EPI scans for each
subject using the unified segmentation approach (Ashburner & Friston, 2005). We applied a
band-pass filter with the cut-off frequencies of 0.01 and 0.08 Hz. The images were smoothed

with the isotropic Gaussian Kernel (full-width-half-maximum = 5).

2.4 Connectivity-based parcellation

2.4.1 Parcellation based on structural covariance (SC-CBP)

For each subject, structural covariance was measured by computing the Pearson’s correlation

coefficient between grey matter volume values of the hippocampus’ VOI voxels (seed voxels)

35



and all other brain grey matter voxels across the whole sample. This procedure yielded a seed
voxels by target voxels connectivity matrix at the group level that was then used for clustering

(see Supplemental material 1.5 Fig.4).

2.4.2 Parcellation based on resting-state functional connectivity (RSFC-CBP)

Resting state functional connectivity between two brain regions was estimated by computing
Pearson’s correlation between time series of blood oxygen level-dependent signal (BOLD) at
the subject level (Biswal et al., 1995; Buckner, Krienen, & Yeo, 2013). For each seed voxel in
the VOI we calculated the correlation with every other grey matter voxel of the brain (see
Supplemental material 1.5 Fig.4). Correlation values were then standardized using the Fisher’s

Z-transformation.

2.4.2.1 Temporal MRI preprocessing

The goal of denoising is to remove or at least to reduce the contribution of any artifacts and
confounds that contaminate neurally generated BOLD-signal. Noise in RSFC can result from
scanner artifacts (Ojemann et al., 1997), subject movement (Power et al., 2014; Satterthwaite
et al.,, 2013; Van Dijk et al., 2012) and physiological processes (Birn, Diamond, Smith, &
Bandettini, 2006). Standard denoising approaches aim to regress out variance that is driven by
noise in the measured BOLD signal. One simple approach to do so relies on the calculation of
global signal or/and signal in two specific non-grey matter tissues (i.e., white matter and
cerebrospinal fluid), which are assumed to reflect artifacts. An alternative approach
capitalizes on machine-learning techniques (e.g., FIX) to automatically identify potential
noise in the data. With these approaches, the part of variance related to noise is typically first
estimated and then regressed out from time-series. Several variants have been developed over

the previous years and we described below the most commonly used strategies.

2.4.2.2 Global signal regression

In global signal regression (GSR), the mean fMRI signal across all brain voxels is regressed
out (Desjardins, Kiehl, & Liddle, 2001; Macey, Macey, Kumar, & Harper, 2004). The
underlying axiom is that any fluctuations that are measured globally are not attributable to

neural activity but have physiological or mechanical origin (Bianciardi et al., 2009; Birn et al.,
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2006; Caballero-Gaudes & Reynolds, 2017; Wise, Ide, Poulin, & Tracey, 2004). Although it
is unclear what exactly is reflected in the global signal and to what extent signal or nuisance is

regressed out, it is still widely used. In this context of scientific uncertainty, the consequences

of GSR on RSFC should be considered.

2.4.2.3 White matter-, cerebrospinal fluid signal regression

Another alternative is to estimate nuisance regressors from white matter (WM) and
cerebrospinal fluid signal (CSF) (Anderson et al., 2011; Hallquist, Hwang, & Luna, 2013; Jo
et al., 2013; Jo, Saad, Simmons, Milbury, & Cox, 2010; Power, Barnes, Snyder, Schlaggar, &
Petersen, 2012; Weissenbacher et al., 2009; Yan et al., 2013). The signal’s fluctuations in
these parts of the brain are assumed to reflect drifts mainly caused by cardiac and respiratory
effects (Dagli, Ingeholm, & Haxby, 1999; de Munck et al., 2008; Van Dijk et al., 2010;
Windischberger et al., 2002). To measure the mean signal across these regions, we created
subject-specific masks by co-registering the WM and CSF templates to each individuals’
space and subsequently, regressed out the mean signal computed within these masks. Note
that the subject-specific templates were eroded in order to remove voxels on the edge of the
mask that relate to grey matter and do not contain pure WM/CSF tissue (Caballero-Gaudes &
Reynolds, 2017; Jo et al., 2010).

2.4.2.4 FMRIB’s ICA-based X-noiseifier

FMRIB’s ICA-based X-noiseifier (FIX) is based on a machine learning approach, in which
RS-fMRI signal has been decomposed into components of neural and non-neural sources by
applying an independent component analysis (ICA) method (Beckmann & Smith, 2004; Cole,
Smith, & Beckmann, 2010; Salimi-Khorshidi et al., 2014). FIX classifies the ICA components
into relevant signal and noise-related components (Cole et al., 2010; Salimi-Khorshidi et al.,
2014). We used the default classifier trained on a standard fMRI dataset, which has been
shown to achieve 95% accuracy (Salimi-Khorshidi et al., 2014). For each participant spatial
ICA was performed using FSL’s MELODIC toolbox (Beckmann & Smith, 2004) and

subsequently noise-variance components were regressed out.

In this study, we evaluated the denoising techniques both individually or in combination as

recently suggested by Burgess et al. (2016) (see Supplemental material 1.4 methods).

37



We investigated six different strategies:
(1) Standard motion regression with 24 regressors without additional explicit denoising,
termed as “no denoising” emphasizing no additional transformations.
(2) Regression of the averaged fMRI signal across all voxels of the brain (GSR).
(3) Regression of white matter and cerebro-spinal fluid-related variance (WM/CSF).
(4) Neutralization of ‘bad’ components of fMRI signal decomposed by ICA (FIX).
(5) A combination of FIX and GSR regression (FIX+GSR).
(6) A combination of FIX and WM/CSF regression (FIX+WM/CSF).

2.4.3 Parcellation based on meta-analytic connectivity modeling (MACM-CBP)

From a computational point of view, MACM substantially differs from the aforementioned
approaches since connectivity is not computed from collected MRI data as done for RSFC
and SC but meta-analytically across activation foci of neuroimaging studies and paradigms

archived in the BrainMap database (Laird et al., 2011) (http://www.brainmap.org). All

experiments in BrainMap that were associated with each seed voxel or in the immediate
vicinity of activation were considered. To account for spatial uncertainty, a spatial filter was
systematically varied by including the closest 20 to 200 experiments in steps of 5 (for more
details, see (Clos, Amunts, Laird, Fox, & Eickhoff, 2013; Clos, Rottschy, Laird, Fox, &
Eickhoff, 2014; Genon et al., 2017; Genon, Reid, Li, et al., 2018). For each seed voxel, a
meta-analytical co-activation likelihood profile for every other brain voxel given each of the
25 filter sizes was computed (with revised ALE algorithm (S. B. Eickhoff, Bzdok, Laird,
Kurth, & Fox, 2012). The final CBP analysis was performed in the filter range of 100 to 148
experiments for the right hippocampus and in the filter range of 82 to 130 for the left
hippocampus. An optimal filter range was defined based on the consistency of each voxels’
cluster assignment across all the filter sizes (see Clos et al. 2013; (Chase et al., 2015; Clos et

al., 2013; Genon et al., 2017) (see in Supplementary Methods 1.3).

2.6 Clustering method

In line with previous studies, we used k-means (using MATLAB software 2014a) clustering,
which showed good agreement with spectral clustering and outperformed hierarchical
clustering (Arslan et al., 2018). The repetition number was set to 500, which almost doubled

the recommended number of 256 repetitions (Nanetti, Cerliani, Gazzola, Renken, & Keysers,
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2009), and the iteration number was set to 255. We examined six levels of granularity (levels
of partitions) ranging from k= 2 to k=7 since previous work has reported stable cluster
solutions at different level of partitions (2,3 and 5 (Adnan et al., 2016; Chase et al., 2015;
Robinson et al., 2015; Robinson et al., 2016)). The clustering was performed at the subject-
level for RSFC and at the experiments range (filter range) for MACM while it was performed
at the group-level with average across bootstrap resampling for SC. Modality-specific and
group-specific parcellations were achieved by assigning the hippocampal voxels to its most
frequent cluster’s label (i.e. by using the mode) across subjects, filter sizes and bootstrapping

samples.

2.7 Measurement of stability and consistency of parcellations

In this work, we estimated stability and consistency of the partitions yielded by RSFC-CBP
since this modality is particularly challenging in terms of its sensitivity to noise, inter-
individual variability (S. Mueller et al., 2013) and its dynamic nature (Hutchison,
Womelsdorf, Gati, Everling, & Menon, 2013). We examined both criteria in this CBP
framework, but emphasized consistency over stability, as we aimed for biological validity in
addition to stability by capturing convergent organizational characteristics across CBP
modalities. In line with previous study (Varikuti et al., 2017), we considered the possibility
that high stability within RSFC could be influenced by ‘structured noise’, which when
regressed out might result in apparently lower stability but preserving biological relevance or
even enhancing it.

We used two procedures in order to cross-validate our findings: (1) split-half (LaConte et al.,
2003; Strother et al., 2002) to estimate the stability within a CBP modality (i.e. RSFC) and (2)
bootstrap resampling with replacement to assess consistency between CBP modalities (i.e.
RFSC vs MACM) (Bellec, Rosa-Neto, Lyttelton, Benali, & Evans, 2010; Efron, 1979).

In contrast to previous studies, we here assumed that multiple partitions at different
granularities might be valid representations of the hippocampus organization, but at different
levels. Accordingly, we focused on split-half and bootstrap resampling instead of internal
validity criteria such as the silhouette value or the percentage of misclassified voxels as these
latter metrics probe optimal data representation within the specific modality at hand, while we
here aimed for stability within and reproducibility across modalities. Stability was estimated
by splitting the sample into halves 10,000 times. The similarity between the two halves was

examined by computing the Adjusted Rand Index (ARI) between the two split partitions. To
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assess consistency, we generated 10,000 bootstrap samples for each modality and compared
these samples between CBP modalities using the ARI (RSFC vs MACM, RSFC vs SC,
MACM vs SC). An ARI value of 1 indicates that the clusterings are identical and a value of 0
suggests that the clusterings are not similar to each other, whereas negative values indicate a
dissimilarity of clusterings higher than chance (see Supplemental material 1.6 methods for

detailed information).

2.8 Evaluating denoising performance

To better understand the actual effect of denoising strategies on the stability and consistency
of RSFC-CBP partitions, we investigated the effect of denoising on seed voxels’ time-course
similarity and on connectivity profile dissimilarity. We assumed that structured noise
influences the BOLD-response in the measured time-series in such a way that the voxels
become more artificially similar (higher time-series similarity) and show higher similarity in
their connectivity profiles. Accordingly, we can expect that a denoising method, which
reduced structured noise successfully, will decrease time-series similarity and increase
dissimilarity of the connectivity fingerprint. Since this latter marker directly drives the
clustering pattern, its sensitivity to denoising is crucially relevant in the CBP application
perspective. We could indeed expect that efficient denoising would to some degree enhance
voxels dissimilarity facilitating the assignment of voxels to clusters. We therefore first
examined voxels similarity regarding their time-series as measured by correlations of the
time-series (Pearson’s correlation), but we also examined the dissimilarity of the seed voxels
regarding their pattern of connectivity with all other brain grey matter voxels by computing

the Euclidean distance between seed voxels’ connectivity fingerprint.

2.9 Consensus clustering

In order to create a cross-modal and stable map of the hippocampus from functional
modalities, we used the bootstrap resampling method (Bellec et al., 2010). The basic idea was
to simulate the replication process of parcellation a large number of times to preserve stable
features and to reduce the occurrence of unlikely or unstable individual patterns (Bellec et al.,
2010). After having created 10,000 bootstrap samples containing a matrix with all seed voxels
and their cluster’ labels (assigning each voxel to a cluster for each modality), we pooled these

samples. After pooling we identified for each seed voxel the most frequent assignment to a
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cluster by computing the mode. This procedure allowed each modality to be represented in
the same regard independent of group or filter size, but only the most stable partition across
both modalities was retained. Accordingly, if one modality provides unstable partitions,
which is particularly likely for RSFC-CBP, the stable partitions from the other modality (here
MACM) will determine the final clustering. Thus, this procedure promotes a final general

parcellation, which is both, functionally cross-modal, and stable.

2.10 Cluster characterization with BrainMap and NeuroSynth databases

To characterize the clusters of our cross-modal consensus parcellation behaviorally we used

two different databases, BrainMap (http://www.brainmap.org/) and NeuroSynth

(http://neurosynth.org/). Both databases are complementary so that we expect their

combination to provide novel insights into the behavioral association and the profile of a brain
region (Genon, Reid, Langner, Amunts, & Eickhoff, 2018a). Furthermore, using both
databases circumvents a circularity limitation (see Supplementary methods 1.2). In the
BrainMap protocol, each activation peak has been individually labeled according to a
predefined taxonomy of behavioral domains such as cognition.memory.working (see (Genon
et al., 2017). Behavioral profiling was performed with a reverse inference approach (Genon,
Reid, et al., 2018a), which identifies the posterior probability P(Task|Activation), that is the
probability of task given activation in that cluster.

In contrast, studies in NeuroSynth were labeled according to terms occurrence in the paper by
using a text-mining approach so that behavioral associations were determined by the terms
used in the corresponding article text (Yarkoni, Poldrack, Nichols, Van Essen, & Wager,
2011). This automated strategy resulted in the inclusion of 11406 studies (tripled the number
of archived studies in BrainMap), but can suffer from a lack of behavioral precision. We also
used the reverse inference approach with NeuroSynth i.e. P(Term|Activation). The decoding
with BrainMap was region of interest (ROI)-based whereas it was coordinate-based with
NeuroSynth requiring the usage of centroid coordinates of each cluster in MNI152 space (see
Supplementary Methods 1.7, Table 1). The lexical meta-analysis approach of NeuroSynth
required decision criteria for selecting functional associated terms so that we excluded all
non-content words (e.g., “addressed”, “abstract”, or “reliable”) and all brain terms that did not
refer to function (e.g., “hippocampus”, “middle temporal lobe”). Additionally, we pooled
terms with the same phonological root (e.g. ‘memory’ was used as a generic term for

‘memories’). All terms that reached a z-score higher than zero were included.
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3 Results

To optimize first the reliability of RSFC-CBP, we examined the stability of its yielded
partitions dependent on the application of different denoising strategies. After having
identified the most reliable denoising method for RSFC, we investigated hippocampal
organization across CBP modalities to determine consistency between modalities and levels
of partition in order to establish a stable cross-modal functional map, which we characterized

behaviorally in the last step.

3.1 Stable RSFC parcellations as a function of denoising

We measured stability within RSFC-CBP with split-half cross-validation and computed a
two-way ANOVA with denoising as one factor (no denoising, GSR, WM/CSF, FIX,
FIX+GSR vs FIX+WM/CSF), levels of partition as a second factor (k=2-7), and ARI as a
dependent variable.

The analysis showed that the most robust RSFC parcellation was achieved when using
FIX+WM/CSF (M = 0.82 ARI, SE = 0.03), GSR (M = 0.82 ARI, SE = 0.03) or WM/CSF
regression (M = 0.81 ARI, SE = 0.04). The least stable parcellation was achieved when using
FIX only (M = .76 ARI, SE = .005); main effect denoising F (5, 719999) = 60220, p < .0001]
(see Figure 2a).

The main effect of partition levels was also significant [F (5, 719999) = 7377.6, p < .0001]
demonstrating highest stability for 6 clusters (M = .81 ARI, SE =.03), followed by 7 clusters
(M = .81 ARI, SE = .03). The ANOVA yielded also a significant interaction effect between
denoising and levels of partition, [F (25, 719999) = 6812.48, p < .0001] (see Figure 2d). All
comparisons between denoising methods and between levels of partition were significant
according to a post-hoc Bonferroni-corrected analysis (p < 0.001).

However, the small magnitude of the differences between denoising approaches suggested
that, overall, they all offered high stability. In the following section, we further investigated
the effect of denoising at the voxel level to better understand how different methods influence

voxels’ properties and thereby the stability of the clustering.
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Figure 2. The effect of denoising on RSFC-CBP and on voxel functional properties. A)
Most stable hippocampal parcellations across all levels of partition (k =2-7) were obtained
with FIX+WM/CSF, GSR and WM/CSF regression as denoising approaches. Bars indicate
mean ARI (£standard errors). Independent of denoising technique the highest stability was

acquired for six clusters. All comparisons were statistically significant. B) Seed voxels’ time-
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course similarity was reduced after the application of denoising. No significant difference was
observed between FIX+GSR and FIX+WM/CSF whereas all the other comparisons were
significant. C) Denoising resulted in an increase of seed voxels’ dissimilarity in comparison to
uncleaned data. FIX-related strategies demonstrated the strongest effect of connectivity
profile dissimilarity. D) FIX+WM/CSF showed the highest stability across all levels of
partition (k=2-7) compared to other denoising techniques. Mean ARI (+standard errors). All

comparisons were statistically significant.

3.2 Effects of denoising on voxels’ time-course similarity and connectivity profile dissimilarity

We computed two separated ANOVAs in order to examine the effect of variance regression
performed with denoising on each type of voxel measure separately: voxels’ time-course
similarity and voxels’ connectivity profile dissimilarity.

The ANOVA with averaged seed voxels’ time-course similarity as dependent variable
revealed a significant main effect denoising [F (5, 4311269) = 78078.56, p < .0001],
demonstrating a decrease in time-course similarity for denoised data. Post hoc Bonferroni-
corrected multiple comparisons revealed no significant difference between FIX+GSR and
FIX+WM/CSF regression (p = .40), but all the other comparisons were significant (p <
.0001). The combination of a model-based (FIX) and model-free (GSR, WM/CSF) denoising
strategy resulted in highly reduced seed voxels’ time-course similarity compared to other
techniques (Figure 2b).

The second ANOVA with averaged seed voxels’ connectivity profile dissimilarity as
dependent variable revealed an increase in dissimilarity of seed voxels with every additional
denoising technique [significant main effect denoising: F (5, 4311269) = 113132.16, p <
.0001] (Figure 2c¢). Our results showed that following denoising, seed voxels’ connectivity
profiles were more discriminable and especially, FIX+WM/CSF led to the highest
dissimilarity between seed voxels’ connectivity profiles. All post hoc Bonferroni-corrected
comparisons were significant (p <.0001).

Thus, overall our analyses supported the use of FIX+WM/CSF as a denoising strategy and

accordingly this procedure was retained for the following multimodal functional parcellation.

3.3 Robust levels of subdivisions across CBP modalities
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After defining the optimal denoising strategy (FIX+WM/CSF) from the voxels’ properties, as
well as from the parcellation’s stability perspective, we examined which level of partition, in
other words, granularity, promotes consistency across CBP modalities. We focused on the
consistency measure instead of stability since we aimed to promote biological validity
estimated through comparisons across modalities. To examine consistency across partition’s
levels, we computed one-way ANOV As with number of clusters (k = 2-7) as factor and ARI
index measuring similarity as the dependent variable, separately for each pair of modality
(RSFC vs MACM, RSFC vs SC and MACM vs SC).

Cross-modal comparisons between SC and functional modalities (RSFC, MACM) resulted in
less consistency than between the two functional CBP modalities (RSFC vs MACM). The
highest similarity between RSFC and SC was achieved for a partition of 2 (M = .58, SE =.03)
and 6 clusters (M = .41, SE =.05) [F (5, 119999) = 167974.16, p < .0001] (see Figure 3). The
comparison between MACM and SC revealed that the highest consistency occurred at a 2- (M
= .54, SE = .15), 3- M = 47, SE = .04) and 5-cluster partition (M = .43, SE = .06), [F (5,
119999) = 17685.1, p < .0001]. All post-hoc Bonferroni-corrected comparisons were
significant (p <.0001).

Visual examination suggested that the highest convergence between SC and functional
modalities could be observed at low granularity, that is, for 2-cluster partition in which all
modalities subdivided the hippocampus into an anterior and a posterior cluster. At the next
subdivision level, partitions already differed markedly between modalities. Namely, the
pattern of subdivisions based on SC is dominated by a medial-lateral organization that
strikingly mimics cytoarchitecture differentiation between subiculum and CA subfields. Such
a medial-lateral subdivision first concerns the posterior portion of the hippocampus (at 3-
cluster partition) but extends into the hippocampus head at 4-cluster partition (see Figure 3).
In turn, functional convergence between RSFC and MACM showed a significant effect on the
ARI [F (5, 719999) = 12506.39, p < .0001], with the highest convergence being observed for
partitions of 5 (M = .55, SE = .10), 3 (M = .49, SE = .03), and 7 clusters (M = .48, SE =
.02)(see Supplementary results 11.2, Table 2). Consequently, partitions into 3, 5 and 7
subregions were considered as optimal level of partitions for defining robust functional maps
of the hippocampus.

In addition to the quantitative analysis, the visual examination of the partition schemes also
proposed high convergence for 3, 5 and 7 clusters, revealing that the 3-cluster partition
divided the hippocampus into anterior, intermediate and posterior subregions in both

modalities (Figure 3). In turn, the 5-cluster partition divided the hippocampus into one
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anterior cluster (head), three intermediate clusters (intermediate caudal, intermediate lateral
and medial, for the body) and lastly, a posterior cluster (tail). Finally, the 7-cluster partition

included three anterior, three intermediate clusters and one posterior subregion (see Figure 3).
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Figure 3. Hippocampus partitions based on SC, MACM, RSFC and cytoarchitecture

mapping. Mean ARI (£standard error). All comparisons between cluster solutions showed

significant differences.
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3.5 Cross-modal functional consensus map

Cross-modal comparisons of CBP modalities revealed high convergence between RSFC and
MACM, especially at higher granularities, whereas SC showed an idiosyncratic subdivision
that deviated from pure functional modalities. For this reason we established a pure functional
cross-modal map of the hippocampus using bootstrap resampling as described in section 2.9
and based on RSFC and MACM parcellations while excluding SC. Importantly, we created
functional maps at different granularity levels (3,5 and 7 clusters) reflecting convergence
between modalities as an approximation of biological validity. These functional maps at
different partition levels should allow the community to investigate hippocampus’ function
and dysfunction at various levels of organization. In the present study, we focused on the 7
cluster partition to study hippocampus function as this high level of partition offers a detailed
architecture along the anterior-posterior axis with small functional units.

As illustrated in Figure 4, each and every retained level of granularity revealed a specific
aspect of hippocampal functional organization. The cross-modal 3-cluster partition subdivided
the left and right hippocampi into an anterior (head), intermediate (body) and a posterior (tail)
subregion. At the next subdivision (5-cluster granularity), bilateral hippocampi were
partitioned into a posterior, intermediate part including 3 subregions - intermediate caudal,
intermediate lateral rostral and intermediate medial rostral -, and finally an anterior subregion.
The 7-cluster cross-modal partition showed hemispheric asymmetry. The body of the right
hippocampus was subdivided into one intermediate lateral and two intermediate medial
clusters. In contrast, the left hippocampus was partitioned into two intermediate lateral
clusters and one intermediate medial cluster (see Figure 4). However, the posterior tail-
cluster as well as the head, which was subdivided into three clusters (anterior rostral, anterior
lateral and anterior medial), were found in both hemispheres.

We hypothesized that the subdivision into medial vs lateral subregions could partially reflect
the already known cytoarchitectonic subdivision. The lateral segments in the body of the
hippocampus corresponded mainly to the CA1-3 subfields and the medial clusters mainly to
the subiculum. This hypothesis was supported by a quantitative comparison of our clusters

with cytoarchitecture from the Anatomy Toolbox (see Table 1).
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Figure 4. Functional multimodal maps across different granularities showing

differentiation along the anterior-posterior and the medial-lateral dimension.

Table 1 Consensus hippocampus in comparison to cytoarchitecture

Consensus cluster Cluster x y z Overlap with
size cytoarchitectonic
subfields
Right hippocampus
Anterior rostral cluster 161 22 -10  -24 CA1, Subiculum
(yellow)
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Anterior lateral cluster (light 181 31 -16 20 CA1l, DG, Subiculum,

blue) CA2

Anterior medial cluster (red) 139 21 -17  -17 Subiculum, CA3
Intermediate lateral cluster 128 33 26 -12 DG, CAl, CA2
(purple)

Intermediate medial 2 cluster 34 26 22 -16 Subiculum
(ocher)

Intermediate medial 1 cluster 86 24 31 9 Subiculum, DG
(dark blue)

Posterior cluster (green) 129 26 37 -2 DG, CA1l

Left hippocampus cluster

Anterior rostral cluster 166 -23 -11 24 CA1, Subiculum
(yellow)

Anterior lateral cluster 122 -31 -15 21 CAl, DG, CA2
(orange)

Anterior medial cluster (red) 149 -24 20 -18 Subiculum, CA3
Intermediate lateral 2 cluster 133 -33 24 -14 DG, CAl, CA2
(light blue)

Intermediate lateral 1 cluster 76 -31 35 7 DG, CAl
(purple)

Intermediate medial cluster 112 -26 30 -9 Subiculum, DG
(dark blue)

Posterior cluster (green) 73 -20 35 1 DG, CA1l

3.6 Cluster characterization

After having defined a functional parcellation map of the hippocampus we characterized the
subregions with regard to behavioral functions using BrainMap and NeuroSynth activation
databases. We focused on the finer partitions (7 subregions) since an examination of changes

in behavioral associations across subregions at this high partition level could provide novel
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insights into the functional dimensions, which has not been investigated previously. More
concretely, at this high level of partitions, we could both track behavioral associations across

the anterior-posterior gradient and explore medial-lateral differentiation.

3.6.1 Anterior vs. posterior functional differentiation

The characterization with BrainMap and NeuroSynth revealed a functional gradient along the
anterior-posterior axis of the hippocampus that, on the one hand, supported the hypothesis of
an emotion-cognition gradient, and on the other hand, suggested a self-world centric
processing gradient.

In BrainMap anterior clusters were more likely engaged in emotion processing whereas
posterior subregions displayed a sparse functionality emphasizing higher cognition functions
requiring abstract representations (e.g. Cognition.memory, Cognition.memory.explicit,
Cognition.memory.language.semantics). (see Figure 5). In addition, the anterior clusters were
associated with various behavioral domains such as perception, interoception and cognition,
demonstrating a diverse behavioral spectrum.

NeuroSynth provided a more detailed functional distinction along the anterior-posterior axis
suggesting a gradient from self-centric (anterior parts) to more world-centric processing
(posterior parts) as represented in Figure 6. The more anterior head clusters were engaged in
cognitive and emotional processes related to personal experiences (e.g. episodic memory,
experiences, autobiographical memory), whereas the more posterior clusters were associated
with behavior like navigation (which requires the use of an abstract representation) and the
processing of information in its environmental context. All the other intermediate-body and
head subregions showed a graduated profile within this qualitative behavioral gradient (see
Figure 6) and all clusters, independent of their position along the anterior-posterior axis, were
associated with encoding, memory and retrieval processes. Interestingly, the gradients were
especially evident in the lateral clusters (green, purple, light blue (orange) and yellow) of the
hippocampus that were associated with CA subfields along the anterior-posterior axis as

illustrated in Figure 5 and 6.
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BrainMap Domains: left hippocampus

lateral posterior _intermediate lateral 1 _intermediate lateral 2 _anterior lateral _anterior rostral Emotion/ anterior
Emotion.Sadness
Emotion.Disgust
Emotion.Fear
Emotion.Happiness
Emotion
Perception.Olfaction
Action.Rest
Cognition.Memory
Cognition.L S

Cognition.Memory.Explicit

C iti L S

Cognition.Memory
Action.Rest
Perception.Olfaction
Emotion
Emotion.Happiness
Emotion.Fear
Emotion.Disgust Cognition/ posterior
Emotion.Sadness

medial intermediate medial anterior medial

BrainMap Domains: right hippocampus

—

medial intermediate medial 1__inter medial 2__anterior medial

Emotion.Fear

Emotion.Anxiety

Emotion

Interoception
Interoception.Respiration.Regulation
Interoception.Sexuality
Perception.Vision.Shape
Action.Rest

Cognition

Cognition.Memory

IIIIIW

Cognition/ posterior

Cognition.Memory.Explicit

Cognition.Memory
Cognition

Action.Rest
Perception.Gustation
Perception.Olfaction
Perception.Vision.Shape
Interception.Sexuality
Interoception
Emotion
Emotion.Anxiety
Emotion.Fear
Emotion.Anger
Emotion.Disgust
Emotion.Happiness

lateral posterior intermediate lateral __anterior lateral _anterior rostral Emotion/ anterior

Figure 5. Anterior to posterior characterization with BrainMap.
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Neurosynth characterization: left hippocampus
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Figure 6. Anterior to posterior characterization with NeuroSynth.
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3.6.2 Medial vs. lateral functional differentiation

In addition to an anterior-posterior organization the parcellation yielded a medial vs lateral
differentiation predominantly in the body and partly in the head. In order to explore the
functional relevance of the medial-lateral axis, we merged the intermediate clusters into one
medial VOI segment and one lateral VOI segment, while anterior rostral and posterior
subregions were not integrated (see Figure 4). Along the medial-lateral dimension the
functional differentiation was less obvious with only slight differences between the two
segments (see Figure 5 and 6). The medial segments were engaged in perception (visual
shape discrimination), interoception (respiration regulation), dorsal attention and familiarity.
Navigation, declarative memory and thinking were also associated with medial parts. In
contrast, the lateral segments seemed to assimilate information into the hippocampal memory-
system hence being engaged in associative memory, learning, reinforcement and extinction.
Finally, we observed a lateralization effect in the sense that left lateral parts were involved in
words and language processing and the right lateral subregions in emotion processing of

happiness, anger and anxiety.

4 Discussion

In this study, we investigated the hippocampal organization in humans bridging the gap
between hippocampal architecture and function using multi-modal CBP and two
complementary databases for functional characterization. In contrast to other CBP modalities,
RSFC, which is especially sensitive to noise, required a preliminary optimal denoising, which
we evaluated in this study in regard to clustering stability and voxels’ properties. Our results
showed that the combination of a model-based (FIX) and a model-free (WM/CSF regression)
denoising technique resulted in stable and biological plausible parcellations estimated through
convergence across modalities. Especially, both pure functional modalities, MACM and
RSFC, displayed high convergence at lower and higher parcellation granularities and could
therefore be combined to derive a cross-modal functional map. We excluded SC from the
cross-modal map as this modality demonstrated a relatively specific organization partly
reflecting functional, as well as micro-architectonic characteristics. We emphasized and
characterized the cross-modal seven-cluster-hippocampus yielding a subdivision into one

posterior cluster, three head clusters and depending on lateralization two or three intermediate
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clusters along the anterior-posterior and medial-lateral dimension. Following this, our
behavioral profiling of the clusters revealed a functional emotion-cognition and a self-world
centric gradient along the anterior-posterior dimension, which seemed to be particularly
evident along the lateral subregion and more pronounced in the right hemisphere. In the
following sections, after briefly discussing our new methodological findings regarding
denoising for RSFC-CBP, we discuss the new insight into hippocampus organization and

function brought by the current study with regard to previous literature.

4.1 Optimal denoising for RSFC-CBP

Our preliminary goal was to find a stable and consistent RSFC parcellation. But in the
absence of unanimous guidelines of denoising approaches for RSFC-CBP in the scientific
literature, we investigated various strategies with regard to stability, and voxels’ properties
such as time-course similarity and connectivity profile dissimilarity.

FIX+WM/CSF was found to contribute to highly stable partitions of RSFC-CBP, although
other denoising techniques showed likewise high stability of parcellations. The subsequent
examination of voxels’ properties on which the clustering builds suggested two potential
mechanisms underlying higher stability of FIX+WM/CSF. First, the part of variance
neutralized by FIX+WM/CSF seemed to contain structured noise, as seed voxels’ time-course
similarity highly decreased when this strategy was applied (when compared to not denoised
data and other denoising strategies, except for FIX+GSR). Secondly, and more importantly in
the application-driven perspective, FIX+WM/CSF increased the discrimination between
voxels as reflected by the significant improvement of seed voxels’ connectivity profile
dissimilarity. These influences eventually resulted in a better assignment of voxels to clusters.
Overall our investigation promoted the combination of a model-based (FIX) and a model-free
(WM/CSF regression) technique as an optimal denoising method, both from voxel-wise
properties and partition-wise clustering. Burgess et al. (2016) already proposed to use FIX
and GSR simultaneously in order to eliminate both local spatial artifacts and global drifts in
fMRI data. Our results also suggested that the combination of FIX and GSR successfully
removed structured noise outperforming FIX or GSR applied separately. FIX+GSR also led to
stable parcellations in a similar extent than FIX+WM/CSF, but the use of FIX+WM/CSF was
further supported by its improvement of voxels connectivity fingerprint discriminability,
which is especially important in the clustering context. The reason why FIX+GSR performed

less efficiently might be that GSR on one hand effectively neutralized motion artifacts, but on
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other hand, distorted distance relationships (Murphy, Birn, Handwerker, Jones, & Bandettini,
2009; Power et al., 2014; Satterthwaite et al., 2017; Satterthwaite et al., 2013; Yan et al.,
2013) that influenced connectivity measures. Based on these considerations, we can assume
that GSR can have detrimental effects for parcellation and that WM/CSF represents a better
alternative for combination with FIX. It has been suggested that WM/CSF regression
eliminates more effectively respiration and cardiac effects (Anderson et al., 2011; Jo et al.,
2010; Liu, 2016) and more generally, any slow undulations compared to GSR or FIX. FIX, in
turn, could catch local or spatial related artifacts, which cannot be captured by WM/CSF in
the same way. For these reasons, we here suggest that the combination of FIX with WM/CSF
represents the most sophisticated double-approach for denoising, in particular in the context

of CBP.

4.2 A convergent functional topography of the hippocampus across different measures of

functional connectivity

In our study, two functional CBP modalities, task-independent (RSFC) and task-dependent
(MACM), yielded CBP results with high convergence at the granularity of 3-, 5- and 7-cluster
partitions, despite divergent methodological procedures. This high similarity between
conceptually related methods, but based on completely different procedures and independent
objects of investigation (i.e. co-activations across paradigms vs participants’ RS-fMRI)
argued for biological relevance of the revealed topographical pattern. Importantly, the
convergence in partition scheme between the two modalities can not be attributed to an
artifact intrinsic to the k-means clustering as a similar clustering procedure applied to
structural covariance data revealed a different partition scheme. Indeed, SC-CBP parcellations
deviated substantially from functional organizations already at low granularity even though at
high granularity this modality also contained a functional head separation, the medial-lateral
differentiation within body and tail seemed to mirror cytoarchitectonic differentiation between
cornu ammonis and subiculum. Although our goal was not to elucidate the relationship
between functional aspects, microstructure and SC, our parcellation work suggested that SC
pattern could to a greater extent than functional connectivity be influenced by microstructural
aspects. Future studies should further investigate the relationships between SC, microstructure
and functional connectivity across the human brain.

Overall, our findings converged with previous literature reporting studies in different methods

and species, which further supported the biological validity of the obtained parcellations. In
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this context, one of the most prominent subdivisions for the hippocampus along the anterior-
posterior axis is the tripartite model found in human and non-human segmentations.
According to that model, the hippocampus is subdivided in an anterior (ventral, head),
intermediate (body) and posterior (dorsal, tail) subregion, shown by anatomical (Swanson &
Cowan, 1977) and gene expression data in rodents (Dong, Swanson, Chen, Fanselow, &
Toga, 2009), and CBP research in humans (Robinson et al., 2015; Robinson et al., 2016).
Furthermore, Robinson et al. (2015) and Chase et al. (2015) extended the subdivision of the
hippocampus and revealed an organization into five subregions for the entire hippocampus as
well as for subiculum subfield using CBP. Robinson’s (2015) MACM parcellation yielded
four serial clusters along the anterior-posterior axis and a fifth anterior head-cluster tilted
medially (see Figure 1). Of note, this pattern was replicated in the current study by RSFC
parcellation but does not appear as a prominent pattern retained in the cross-modal map.
Beyond these minor differences between studies, non-species studies divided the CAl
subfield in rodents in five serial segments along the dorsoventral axis (Petrovich, Canteras, &
Swanson, 2001; Risold & Swanson, 1996), supporting the observation and potential
biological meaningfulness of serially aligned clusters in our and Robinson’s work.

To investigate hippocampus’ function, we capitalized on the consensual 7-cluster partition
scheme as it provides a very detailed functional architecture representing anterior-posterior
gradient into small units, which was never achieved before. Our cross-modal map of the
hippocampus at this level exhibited three head clusters, three or two intermediate clusters
dependent on lateralization and one tail cluster. Interestingly, the posterior cluster in the tail
remained as a relatively homogeneous functional region across functional modalities and
granularities. This level of fine parcellation also contains a medial-lateral differentiation,
which seemed to reflect differences between cornu ammonis and subiculum, respectively.
According to the current parcellation, these two regions could be partitioned into serially
positioned clusters along the anterior-posterior axis, which is in line with other studies (Dong
et al., 2009; Fanselow & Dong, 2010). In other words, our clustering of seven subregions
seemed to reflect on one hand the differentiation between cornu ammonis and subiculum and

on the other hand further subdivisions along the anterior-posterior axis.

4.3 Functional organization of the hippocampus and human behavior

Based on the high convergence between RSFC and MACM we computed a fine consensual

parcellation combining both modalities. We then drew up the behavioral profile of each
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subregion using BrainMap and NeuroSynth as two complementary databases. We hence
behaviorally characterized the anterior-posterior gradient and the medial-lateral differentiation

taking an overarching view with activation databases.

4.3.1 Medial-lateral differentiation

We hypothesized that our organization along the medial-lateral axis reflected the
differentiation between the subiculum (medial) and the CA subfields (lateral) evidenced by
cytoarchitecture. Our behavioral profiling suggested that the medial segments participated in
navigation, declarative memory and familiarity, whereas the lateral segments were associated
with reinforcement, learning and extinction. Overall functional differences along the medial-
lateral axis were sparse. Based on these behavioral descriptions we can only speculate that the
lateral clusters were functionally involved in storing potentially integrating information into
other systems and networks, whereas the functional specificity of the medial subregion was
less evident. The conceptual inferences of the present study are limited on one hand by the
spatial precision of standard MRI measurements and on the other hand, by current cognitive
ontologies which have been derived by the study of human behavior and mind. By making all
our partitions openly available to the scientific community, we invite future studies to further
complement these first integrative findings on hippocampus organization and function.
Nevertheless and importantly, the medial-lateral differentiation in the current fine parcellation
has revealed that the functional gradient proposed in previous studies is mainly evident along
the lateral segment. This aspect of functional organization of the hippocampus has
presumably complicated or obscured the characterization and understanding of the gradient.
In the current study, extensive behavioral profiling of fine subdivisions has allowed us to

discuss new hypothesis beyond common psychology distinctions of behavioral functions.

4.3.2 Anterior-posterior organization

Evidence for an emotion-cognition and self~-world centric gradient

The present study brought new integrative insights across research fields on the longitudinal

functional differentiation of the hippocampus previously demonstrated in rats (de Hoz, Knox,

& Morris, 2003; Jung, Wiener, & McNaughton, 1994; E. Moser, Moser, & Andersen, 1993;
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M. B. Moser & Moser, 1998; Vann, Brown, Erichsen, & Aggleton, 2000), monkeys
(Colombo, Fernandez, Nakamura, & Gross, 1998) and humans (Poppenk et al., 2013;
Robinson et al., 2015; Robinson et al., 2016; Small et al., 2001) by revealing an emotion-
cognition gradient within the broad behavioral domains of BrainMap and a self-world centric
gradient based on more specific behavioral concepts in NeuroSynth. For reader’s convenience
the main pattern is illustrated in Figure 7 in which we focused on lateral clusters. Below we

discuss these patterns with regard to previous hypotheses proposed in the literature.

Besides the already often discussed differentiation of emotion-cognition along the anterior-
posterior dimension, that we replicated with both databases integrating the scientific
knowledge of thousand of studies, we also speculated that hippocampal organization along
the anterior-posterior axis could be better explained with a self-world centric gradient. As
actually almost all subregions are associated with memory processes, we speculate a self-
centric information processing mode in the most anterior cluster with psychological functions
such as autobiographical memory and emotion (see Figure 7) contrasting with a world-centric
processing of information calling concepts such as navigation, scene and context processing
associated with the most posterior hippocampal subregions. In other words, the overall pattern
of behavioral concepts along the anterior-posterior axis suggest, in our view, a latent or
underlying functional change from one pole of self-related processing to another pole of
world-related processing. Importantly, general processes like encoding, and retrieval appeared
equally distributed along the longitudinal axis. Thus, altogether our findings are more in favor
of a self-world centric information processing gradient rather than a behavioral domain-wise
(imagination-perception (Zeidman & Maguire, 2016) or encoding-retrieval organization (H.
Kim, 2015; Lepage et al., 1998; Prince et al., 2005)) along the anterior-posterior axis of the
hippocampus. Importantly, this self- and world-centric distinction may be reminiscent of
egocentric vs allocentric distinction suggested by studies of spatial processing in rodents (R.
G. Morris, Hagan, & Rawlins, 1986) and is particularly evident in the right hemisphere, but
their meaning in the human cognitive system should nevertheless be considered beyond
spatial representation, that is, also in relation to memory and decision making domains. If this
hypothesis holds true, it has important implications for our understanding of psychiatric and
neurological disease but its validity remains to be further evaluated in future studies using

hypothesis-based experiments.
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BrainMap Domains: left hippocampus
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Figure 7. Emotion-cognition and self-world centric functional gradient along the

anterior-posterior axis. Lateral clusters display an emotion-cognition gradient yielded with

BrainMap and a self-world centric gradient found with NeuroSynth.

Limitations

The large-scale data aggregation on which the current study capitalized also comes with

specific limitations. First, we focused on MRI, a method, which has a relatively limited spatial

resolution and a relatively limited signal-to-noise ratio in the subcortical structures. Therefore,

the clusters we have obtained can only be considered as homogeneous regions with respect to

the usual MRI signal. Accordingly, we assume that our lateral segment actually represents an

aggregation of the known different CA subfields showing different cytoarchitecture and
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function. In particular, rodent studies suggested that CA1 and CA3 differ in their involvement
in processes such as pattern separation and pattern completion (Guzowski, Knierim, & Moser,
2004). While these differentiations remain debated in humans (Deuker, Doeller, Fell, &
Axmacher, 2014; Koster et al., 2018) in whom processes such as encoding, retrieval and
association between unrelated items have been additionally proposed to differentiate distinct
subfields (Bakker, Kirwan, Miller, & Stark, 2008; Deuker et al., 2014; Dimsdale-Zucker,
Ritchey, Ekstrom, Yonelinas, & Ranganath, 2018). These differentiations could not be
investigated in the present study due to a lack of behavioral precision in the representative
concepts of both activation databases, in addition to the aforementioned limited spatial
resolution. Future studies should therefore investigate how the anterior-posterior functional
differentiation could be integrated with the subfields functional specialization in the
hippocampus.

Another relevant limiting point refers to the complex structure of the hippocampus itself and
its consequences for the optimal number of clusters. The human hippocampus is characterized
by angulation and a variable number of digitations (Ding & Van Hoesen, 2015; Treit, Steve,
Gross, & Beaulieu, 2018; Wisse et al., 2012). Both features could have influenced our results
in terms of the optimal number of clusters. Due to the limited spatial resolution of MRI data,
we may have missed differences in connectivity profiles of conflated subfields in the posterior
hippocampus hence leading to a single tail cluster in the present study. Additionally,
hippocampal gyrification, known as digitations, vary between individuals and have been
previously discussed as a possible factor for inter-individual variability in the hippocampus
(C. Chang et al., 2018; DeKraker et al., 2018; Ding & Van Hoesen, 2015; Treit et al., 2018).
How this affects cognition and psychopathology (Oppenheim et al., 1998) and whether
different digitations have different connectivity profiles and hence could influence clustering
pattern is still unclear. This question should be addressed in future studies with high spatial
precision techniques. Overall, the maps and conceptual findings reported in the present study
are useful for the specific mapping modality they have been derived from, that is,

conventional field MRI in humans.

Conclusions

In the present study we established for the first time a robust and stable RSFC hippocampal
parcellation by applying a combination of a model-free and a model-based denoising

framework. By combining partitions based on spontaneous connectivity with partitions based
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on task-based connectivity, we built the first cross-modal generic hippocampal map at
different levels of partition. Extensive behavioral profiling of the finest partition allowed
inferences regarding the nature of information processing principles along the anterior-
posterior axis in the hippocampus, beyond the concepts derived from psychological studies in
specific fields. Importantly, while previous characterization of the anterior-posterior
differentiation based on these concepts cannot be refuted and were partially supported, they
could not account for the range of associations observed by our quantitative approaches. In
turn, we proposed a self-world centric processing mode gradient along the anterior-posterior
axis in humans, a data-based hypothesis that should be further investigated with specific
model-based approaches. Further functional decoding allowed us to speculate that the medial-
lateral distinction represented an assimilating process for the lateral part integrating
information across different systems. Importantly, our medial-lateral distinction for the first
time evidenced that the anterior-posterior gradient is predominantly observed in the lateral
part of the hippocampus and an independent mapping approach based on structural data
(structural covariance) further evidenced a medial-lateral distinction. Finally, the pattern of
separation revealed by structural covariance appeared as a hybridization of functional
connectivity and microstructure hence bringing new light into this relatively understudied
mapping modality and offering an alternative and potentially better partition for compression
of structural data (cfr. (Varikuti et al., 2018)). All our uni-modal and cross-modal maps are

available in the ANIMA database (http://anima.fz-juelich.de/) to support future hippocampal

investigations of hippocampal function in healthy or pathological populations.
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1.1 HCP functional data

I. Supplemental methods
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Figure 1. Resting-state functional signal in the hippocampus (green and blue ROI) of the
HCP dataset on coronal slices.

64



1.2 Circularity assumption

A circularity limitation has been raised several times in previous studies parcellating brain
regions based on MACM-CBP and characterizing these regions using the BrainMap database
again. In those studies (Clos et al., 2013), MACM-CBP was performed in terms of whole-
brain co-activation profiles of BrainMap to delineate subregions, and in the second step, the
defined subregions were characterized in regard to associated behavioral concepts in this
same database. Importantly, although both methods require BrainMap data, the underlying
statistical computations and the type of data differ considerably.

The initial analysis of identifying clusters for CBP is of exploratory nature and is based on an
exploratory statistical framework (S. B. Eickhoff et al., 2015) using co-activations across
studies and paradigms that were published. The next step of behavioral characterization is
based on post-hoc inferential statistics (i.e. reverse inference P(Activation|Task) on
associations between peaks and behavioral labels of the BrainMap database. Therefore we
would like to emphasize that even though BrainMap data is used for both steps, MACM-CBP
and behavioral profiling, the underlying statistical frameworks were different and were also
applied on different types of data (whole brain co-activation maps vs behavioral domains)
hence were less circular then assumed. Nevertheless, in the present study, we further
addressed this potential circularity by first externally validate the pattern of MACM-CBP with
RSFC-CBP and hence building a robust subdivision scheme. Furthermore, we validated
externally the behavioral profiling of our clusters revealed by the analyses of the BrainMap
database with an additional, independent database i.e. NeuroSynth. This procedure should

have avoided circularity at any steps, parcellation and behavioral profiling.

1.3. Parcellation based on meta-analytic connectivity modeling (MACM-CBP)
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Figure 2. Filter range for MACM-CBP. Deviants and stability z-scores on median- filtered
deviants. The vertical lines indicate the selected, most stable range of filter sizes (i.e., range

with least deviants across k). Maximum z- score of median-filtered deviants.

1.4 Combination of denoising strategies

In the history of fMRI and denoising the application of several subsequent cleanup strategies
is not unusual. Different approaches were introduced in the past to remove different types of
artifacts. The most common approach is to regress out confounders such as realignment
parameters, tissue-specific signals (WM and/or CSF), global signals, and signals either from

principal component or independent component analyses as stated in a recent report by
(Satterthwaite et al., 2017).
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Another recent work examined systematically what are the most common denoising
approaches in use and how do they influence the resting state test-retest reliability (Varikuti
et al., 2017). The literature survey of the authors revealed that combinations of different
confounders are often performed. In particular, the most common strategies were global and
tissue-class specific mean signal regression (either only WM/CSF or in combination with
GSR) followed by principal component analysis in addition to GSR or with tissue specific
confounders (Varikuti et al., 2017). ICA-based models like those underlying FIX, which is
based on a machine learning approach, were less likely to be applied possibly because of its
training requirements of the classifiers. Nevertheless, Griffanti et al. (2014) demonstrated the
high accuracy performance (99%) of these classifiers on HCP data to detect spatial artifacts,
hence making FIX the first choice for such dataset. From a purely mathematical point of
view, however, FIX was not designed to capture global or slow waves in the data, since it
aims for an independent component separation (Griffanti et al., 2014) that does not apply to
the interlocking global noise. In other words, it is highly sensitive for spatial artifacts in
particular, but cannot capture global drifts. On the other hand, GSR is not selective at all but
removes global waves with the negative effect of spatial distortions in functional connectivity,
which can represent a major problem for parcellation work.

In line with this argument, Burgess et al. (2016), pointed out the limitation of using only FIX
or GSR separately and combined both methods investigating its influence on motion-artifacts.
These were significantly reduced after both approaches were applied together and not
separately (Burgess et al., 2016). In addition, Satterthwaite et al. (2017) pursued the same
goal and confirmed that adding GSR to ICA-AROMA reduced motion artifacts significantly
and provided the same performance as the classical denoising strategy with six realignment
parameters, WM, CSF regression, and GSR applied jointly to the data. All their high
performance models contained GSR. However, the use of GSR remains controversial because
long-distance connections benefit from this approach, while short-distance connections do not
as regionally specific artifacts cannot be captured by GSR (Satterthwaite et al., 2017). ICA-
based denoising, on the other hand, did not show distance dependency, but left spurious
stripes of motion artifacts unless GSR was added (Satterthwaite et al., 2017). In order to avoid
distance dependency effects in our study (which could flawed the clustering), we included and
tested another approach combining FIX with WM/CSF regression. We assumed that FIX
would identify spatial artifacts and WM/CSF regression would compensate for physiological

noise and, like GSR, all undulation influences of movement in the data.
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To demonstrate the effects of denoising we prepared some examples of grey ordinate plots for
three subjects (Fig. 3) showing that the combination of model-based and model-free
techniques do not distort the data. As expected, the plots show that the model-free strategies
indeed additionally removed stripes present in the data that were not identified by FIX. Thus,
in addition to the previous assumptions about the usefulness of a combined approach, our

results also suggested that such a combination did not incorrectly distort the data.
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Figure 3. Influence of denoising on RS-fMRI signal. Grey ordinate plots for subject 1-3 for
resting-state  fMRI data either not denoised or denoised with different techniques
demonstrating the removal of artifacts especially with FIX+WM/CSF achieving best results

through removing stripes in the data as indicated with arrows.

1.5 Measure of RSFC-CBP and SC-CBP

For SC-CBP we had a matrix with “participants x hippocampal grey matter values’, which we
correlated with another group-level matrix containing ‘participants x whole brain grey matter
values’ resulting in a group-level ‘seed x whole brain voxels’ matrix. In contrast, for RSFC
we correlated the seed voxels matrix across the time-series with whole brain voxels across

time-series for every single subject (see Fig. 4).
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Figure 4. Connectivity input of RSFC-CBP and SC-CBP for the clustering algorithm

and its output vector of seed voxels assigned to clusters.
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1.6 Adjusted Rand Index

The adjusted rand index reflects the dissimilarity between partitions based on the number of
pairs of elements (here voxels) that are either clustered together or separately in partitions.
For example, if two given, voxel A and voxel B, are clustered together in partition X and also
in partition Y, these two partitions agrees for this pair of voxels A-B. In contrast, if voxel A
and voxel B are clustered together in partition X, while voxel A and voxel B are assigned to
different clusters in partition Y, the two partitions, X and Y disagree for this pair of voxels A-
B. Taking into account the total number of pairs, we can make a statement about how many
pairs of voxels in both parts agree, and how many do not. Therefore in the numerator the
agreement between clusterings is expressed (pairs of voxels that are found in both clusterings)
whereas in the dominator the total number of pairs is specified.

In order to compare two partitions/clusterings we used a matrix containing for each
hippocampal voxel the cluster number to which it was assigned across participants (RSFC,
SC) or filter sizes (MACM). For stability measures in RSFC, we divided the matrix randomly
into two halves based on the number of participants. Each half contained all hippocampal
voxels assigned to clusters within one half of the participants. We computed the mode of
cluster assignment across this half, resulting in a vector containing only the hippocampal
voxels and their most frequent cluster labels for the specific half. We compared the two
vectors resulting from the two halves with each other using the ARI as shown in Fig. 5. For
validity measurements, we used the same procedure except that the entire matrix with all
bootstrapped participants (or filter sizes) was used to generate the hippocampal vectors (see

Fig. 5).

72



ARI measure within modality RSFC-CBP

FIX+WM/CSF GSR
7 cluster solution 7 cluster solution

§ 150
L
-]
v 200
250
300 s
Voxels within ROI
Voxels within ROI
1. split half 2. split half
Seed voxel Seed voxel

HEEBEEREE «~ HEEBREEE)
1 2 4 7 . k €> 5 5 4 a4 . «x K cluster number

= Mode across half of the subjects = Mode across half of the subjects

ARI measure between modalities

RSFC (FIX+WM/CSF) MACM
7 cluster solution 7 cluster solution
<a b4 = i
S0 g
w
£
100 5
o
B 3
9, %
-] o
vy 200 g
A
250 8
E
300 :
Voxels within ROI Voxels within ROI
Seed voxel A Rl Saad vonel

(1234 | . [s60)
1 2 4 7 k

= Mode across subjects

(112 ]3] [s60]
4 2 6 7 k

= Mode across filter sizes

<>
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1.7 Cluster characterization with BrainMap and NeuroSynth databases

For NeuroSynth we used the following centroid coordinates of each cluster in MNI152 space

in order to associate specific behavioral profiles to the partitions.

Consensus cluster X y z
Right hippocampus

Anterior rostral cluster 22 -10 -24
Anterior lateral cluster 31 -16 -20
Anterior medial cluster 21 -17 -17
Intermediate lateral cluster 33 -26 -12
Intermediate medial 2 cluster 26 -22 -16
Intermediate medial 1 cluster 24 -31 -9
Posterior cluster 26 -37 -2
Left hippocampus

Anterior rostral cluster -23 -11 -24
Anterior lateral cluster -31 -15 -21
Anterior medial cluster -24 -20 -18
Intermediate lateral 2 cluster -33 -24 -14
Intermediate lateral 1 cluster -31 -35 -7
Intermediate medial cluster -26 -30 -9
Posterior cluster -20 -35 1

Table 1. Coordinates of the generic hippocampal map for NeuroSynth characterization

II. Supplemental results

II.1 Extending decision criteria for optimal cluster number

Throughout our work two major criteria were responsible for our decision for the optimal

number of partitions: stability measured with split-half cross-validation and biological
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meaningfulness estimated by bootstrap resampling across MRI modalities and compared with
the ARI. For the sake of completeness we also examined an index of data representation
within each connectivity modality. We here used Variation of Information (VI) as suggested
by Kelly et al. (2012). This metric measures the distance between two clusterings and
indicates how much information is lost or captured when switching from one cluster solution
to another clustering (Meila, 2007). Accordingly, a cluster solution is considered as optimal
when it does not show an increase of VI compared to other cluster solutions so that low
values show optimal solutions in relation to previous or subsequent cluster solutions. We here
examined this metric for cluster solutions ranging from two to ten cluster solutions. Overall,
VI further supported the 7 cluster solution as an optimal level of compression for both
functional connectivity measures as summarized in Fig. 6.

In particular, for RSFC, VI tends to decrease from the 6-cluster to the 7-cluster solution, but
either to remain stable (right hippocampus) or to increase (left hippocampus) from the 7-
cluster solution to the 8-cluster solution. For MACM, VI showed a clear decrease from the 6-
cluster solution to the 7-cluster solution, but an increase from the latter to the next solution in
the left hippocampus. Somewhat surprisingly, the pattern was different in the right
hippocampus with VI showing a progressive increase from the 5-cluster solution up to the 9
cluster solution, thus a pattern that differs with what is observed with RSFC. We could
therefore assume that this difference is related to technical factors (such as overall more
variance in activation peaks reported in the left hippocampus), despite the influence of a
biological factor for this observation cannot be ruled out. Although SC parcellation was not
incorporated in our consensus functional parcellation (based on RSFC and MACM), for the
sake of completeness, we also examined VI in clustering based on SC. This reveals that VI
decreases from a 5-cluster solution to a 6-cluster solution, but then shows a “plateau” until the
10 cluster solution for which it increases when compared to the 9 cluster-solution in the right
hemisphere. In contrast, on the left hippocampus, VI clearly reaches an optimum at a 7-cluster
level.

Thus, in sum, the VI criterion supported the 7 cluster solution as an optimal representation of
connectivity variance as estimated by different features (MACM, RSFC, SC) in particular in
the left hippocampus. We noted that the right hippocampus showed a slightly more complex
pattern with differences across features; nevertheless, hemispheric differences are beyond the
scope of the current study. Overall, both the investigation of VI across cluster solution and
our previous investigation of stability support a 7-cluster subdivision as an optimal

compression of MRI functional connectivity features in the hippocampus.
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Figure 6. Variation of information across modalities and hemispheres supported cluster

solution 7 for RSFC and SC-CBP, and 5 for MACM-CBP.

I1.2 Functional consensus map

In order to be able to establish a consensus map that was generally representing functional
architecture of the hippocampus we decided to merge the 10 000 generated bootstrap samples
of MACM and RSFC as these two modalities exposed the highest convergence across
modalities visually and in regard to the ARI index as represented in the following table 2. SC,
on the other hand, had a hybrid-like nature with a functional head division that was similar to
MACM and RSFC and a body and tail partitioning reminding of the cytoarchitectonic

subfields for which it was excluded from the cross-modal map.
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right cluster solution 3

MACM-CBP SC-CBP
RSFC-CBP 0.4645 0.3891
MACM-CBP 1 0.5260

cluster solution 5

RSFC-CBP 0.6514 0.3984
MACM-CBP 1 0.3686
cluster solution 7
RSFC-CBP 0.4641 0.2937
MACM-CBP 1 0.3361
left cluster solution 3
RSFC-CBP 0.4963 0.3751
MACM-CBP 1 0.4667

cluster solution 5

RSFC-CBP 0.4642 0.3759
MACM-CBP 1 0.4838
cluster solution 7
RSFC-CBP 0.5116 0.3715
MACM-CBP 1 0.3592

Table 2. Clustering similarity (measured with ARI index) across CBP modalities.

11.3 Clustering based on unsmoothed data




RSFC (FIX+WM/CSF) SC RSFC (FIX+WM/CSF)

RSFC (FIX+WM)/CSF) sc RSFC (FIX+WM)/CSF)

Figure 7. Unsmoothed hippocampi for RSFC and SC modality. Fragmented clustering
still indicates the already known pattern from smoothed data, with RSFC showing an anterior-
posterior differentiation and SC a cytoarchitectonic-like pattern. Lower row shows green

transparent clusters in order to illustrate the underlying organization.
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Abstract

The hippocampus is a plastic region and highly susceptible to aging and dementia. Previous
studies explicitly imposed apriori models of hippocampus when investigating aging and
dementia specific atrophy but led to inconsistent results. Consequently, the basic question of
whether macro-structural changes follow a cytoarchitectonic or functional organization across
the adult lifespan and in age-related neurodegenerative disease remained open. The aim of
this cross-sectional study was to identify the spatial pattern of hippocampus differentiation
based on structural covariance with a data-driven approach across structural magnetic
resonance imaging data of large cohorts (n=2594). We examined the pattern of structural
covariance of hippocampus’ voxels in young, middle-aged, elderly, mild cognitive
impairment and dementia disease samples by applying a clustering algorithm revealing
differentiation in SC within the hippocampus. In all the healthy and in the mild cognitive
impaired participants, the hippocampus was robustly divided into anterior, lateral and medial
subregions reminiscent of cytoarchitectonic division. In contrast, in dementia patients, the
pattern of subdivision was closer to known functional differentiation into an anterior, body
and tail subregions. These results not only contribute to a better understanding of co-plasticity
and co-atrophy in the hippocampus across the lifespan and in dementia, but also provide

robust data-driven spatial representations (i.e. maps) for structural studies.

Keywords: dementia, temporal lobe, structural covariance, parcellation, elderly

Abbreviations: 1000BRAINS = MRI dataset from Forschungszentrum Juelich, AD =
Alzheimer’s disease, ADNI= Alzheimer’s Disease Neuroimaging Initiative dataset, aRl =
adjusted Rand Index, CA1= Cornu Ammonis subfield 1, CA2= Cornu Ammonis subfield 2,
CA3= Cornu Ammonis subfield 3, CA4= Cornu Ammonis subfield 4, CamCAN = Cambridge
Centre for Ageing and Neuroscience dataset, CAT12= Computational anatomy toolbox,
CDR= Clinical dementia rating, eNKI= Enhanced Nathan Kline Institute-Rockland Sample,
FWE = family wise error, HCP= Human Connectome Project dataset, I[QR=interquartile
range, MCI= mild cognitive impairment, OASIS3= Open Access Series of Imaging Studies

dataset, SC = structural covariance, SPM= statistical parametric mapping
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Introduction

The hippocampus is a notable brain region from its lifelong plasticity potential (Moreno-
Jiménez et al, 2019), which can be observed with microstructural and molecular
investigations but also at the macro-structural level using morphologic measurements of
structural MRI. From macro-structural studies, the plasticity of the hippocampus seems to
relate to experience and more particularly to cognitive training (Boyke, Driemeyer, Gaser,
Buchel, & May, 2008; Maguire et al., 2006). Relatedly morphological measurements of the
hippocampus across individuals suggest an important inter-individual variability (Fleming
Beattie et al., 2017; Llera, Wolfers, Mulders, & Beckmann, 2019; Van Petten, 2004).

Since aging and Alzheimer’s disease atrophy patterns resemble each other, in particular,
showing important atrophy in temporal lobes, several authors suggested that dementia simply
represents a more severe or accelerated aging process (Fjell et al., 2014). It has been
frequently pointed out that clinically normal individuals demonstrate an accumulation of
amyloid-beta and tau pathologies in the hippocampus and entorhinal cortex suggesting that
neurobiological features associated with Alzheimer’s disease can also be found in apparently
healthy elderly populations (Sperling et al., 2019; Ziontz et al., 2019). Thus the
neurobiological relationship between healthy aging and dementia and in particular the
hypothesis of dementia as a form of increased aging process remains controversial and poorly
understood.

Most researches have focused on hippocampal atrophy assessed at the macro-structural level
and as representing the most straightforward non-invasive estimates of age-related structural
changes. In other words, a large amount of investigations have aimed to identify specific
pattern of atrophy across hippocampus’ organization. Two different models of hippocampus’
organization were referred to: the subfield model (based on cytoarchitecture features) and the
tripartite model differentiating regions along the longitudinal axis such as the head-body and
tail (based on functional and large-scale connectivity features). Since subfields and subregions
are suggested to be characterized by different neurobiological features, they are likely to be
differently affected by ageing and pathological processes. Despite several studies have
investigated this question, no convergence towards individual subfields and subregions as
being specifically affected by atrophy has emerged from these studies hindering our

understanding of the underlying mechanisms.
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In sum, our fundamental understanding of structural changes in the human hippocampus
across the adult lifespan and in dementia remain fairly limited, but several issues should be
pointed out to account for the current state of art. First, as described above, most studies were
based on an a-priori model of hippocampus organization while it is unclear which model is
the most appropriate. On the one hand, one could expect macro-structural changes to be
constrained by the topology defined by cytoarchitecture, but on the other hand, as plasticity
has been related to behavioral function, one could expect macro-structural changes to follow
the functional organization of the human hippocampus along the longitudinal axis. Second,
partly related to the first conundrum, the question of whether the pattern of structural changes
in aging and dementia follow a similar topological pattern remains as a completely open
question.

In this study, we have probed morphological changes across large datasets of structural MRI
in healthy subjects and dementia patients applying a data-driven approach to reveal latent
patterns of differentiation in the hippocampus. Using the pattern of covariance with other
brain regions across individuals to guide the clustering, importantly, allows the integration of
interrelationships between the hippocampus and the whole brain hence revealing a more
systemic pattern of change.

To implement the aforementioned objectives practically, we used a parcellation approach
applied on hippocampus’ structural co-variance in five different age and disease groups:
young, middle-aged, elderly adults, mild cognitive impairment patients (MCI) and patients
with dementia coming from independent datasets. We use the term “co-variance” to refer to
healthy life-span changes in structural co-variation, which are assumed to be driven mainly by
co-plasticity (e.g. regions developing together) and partly by co-atrophy, especially in older
adults (e.g. regions degenerating together). In contrast, in dementia, we expect co-variation to
be primarily driven by co-degeneration of brain regions. Accordingly, we use the term “co-
atrophy” in the context of dementia patients (even though technically, the same “structural
covariance” measure was applied across age and disease groups.

In this framework, a data-driven approach of structural covariance offers a bottom-up
examination of the topological patterns of co-plasticity/co-variation in the first adult life
periods and co-atrophy in elderly and dementia. Importantly, we examined the stability of the
pattern across datasets by using split-half cross validation and robustness across groups with
bootstrapping approaches. We explored the possible mechanisms explaining these patterns by
examining the similarity of these topological patterns with the pattern of functional

organization of the hippocampus, and investigated the structural networks that underlie the
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different hippocampus subregions. Finally, we characterized these structural networks with
regards to behavioral functions and compared these structural networks with functional
networks.

Materials and methods

Datasets, cohort samples and age-phenotypical groups

We included six different datasets: Human Connectome Project (HCP)

(http://www.humanconnectome.org), Enhanced Nathan Kline Institute-Rockland Sample

(eNKI) (http://fcon_1000.projects.nitrc.org/indi/enhanced/), Cambridge Centre for Ageing

and Neuroscience (CamCAN) (https://www.cam-can.org/) (Shafto et al., 2014; Taylor et al.,
2017), 1000BRAINS from Forschungszentrum Juelich
(https://www.frontiersin.org/articles/10.3389/fthagi.2014.00149/full), Alzheimer’s Disease

Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu/) and Open Access Series of

Imaging Studies (OASIS3) (https://www.oasis-brains.org/). From these datasets, we formed

five cohort samples: young, middle-aged, elderly, MCI and dementia participants. The age
range of the group of young adults was set to 20-35 years. In turn, the age range of the
middle-aged group was 35-55 years and for the elderly, we set a conservative age range of 60-
80 years. MCI and AD patients were selected within the same age range as the elderly group.
For the dementia group we included patients with probable Alzheimer’s type pathology by
selecting Alzheimer’s disease patients from the OASIS3 dataset and ADNI dataset, as well as
the late cognitive impaired individuals from the ADNI dataset who are considered as patients
at the early stage of Alzheimer’s disease (Qiu, Li, Zhou, & Lu, 2014). The MCI group was
formed by the participants with the diagnosis ‘early MCI’ (ADNI dataset) and by participants
with a CDR score of 0.5 from the OASIS3 dataset. The demographic data of each study
samples and groups are reported in Table 1 and Tab 2 below. The analyses of these data were

approved by the ethical committee of the Heinrich Heine University Diisseldorf.

Table 1. Demographic data of all collected samples

Samples Sample Mean age % Education CDR MMSE
size (n) (SD; age females
range)
Young_ HCP n=304 278 50.6%  SSAGA_Educ: / 29.0 (SD
(SD=3.55; 14.8 (SD= 1.75; =1.07; 23-

90



Young eNKI

MiddleAged eNKI

Old_eNKI

Young CamCAN

MiddleAged CamCAN

Old_CamCAN

Old_1000BRAINS

Old_ADNI

MCI_ADNI

n= 140

n=76

n =207

n=213

n =492

n=139

n=213

22-34)
24.8
(SD=3.85;
20-34)

43.6
(SD=5.7;
35-54)

68.3
(SD=5.5;
60-79)

28.4
(SD=3.97;
20-34)

443
(SD=5.78;
35-54)

69.8
(SD=5.96;
60-79)

66.9
(SD=4.24;
60-75)

71.6
(SD=4.65;
61-79)

69.2
(SD=5.05;

50%

52.7%

51.3%

50%

50.7%

50.2%

50%

51.7%

50.2%

11-17); NAs: 0
SES-Adult
Education code, 5.4
SD=0.8; 4-7; 14.8
(SD = 1.6; 11-18);
NAs: 0

SES-Adult
Education code, 5.5
(SD=1; 3-7); 15.1
(SD=2.3; 10-21);
missing n=2
SES-Adult
Education code, 6.0
(SD=1.0 4-7); 16.1
(SD=2.4; 12-24),
NAs: 0

Education scoring:
6.2 (SD=1.7; 2-8);

missing n=21

5.7 (SD=1.8, 1-8);

missing n=35

5.0 (SD=2.2, 1-8);

missing n=65

Education  years:
13.7 (SD= 3.7, 3-

27); missing n=1

Education  years:
16.6 (SD=2.6, 12-

20); NAs: 0

Education  years:

15.9 (SD=2.6, 10-

CDR sum
of  boxes:
0.02, SD=
0.11, 0-0.5;
NAs: 0

CDR sum

of  boxes:

30); NAs: 0
/

29.4
(SD=1.17,
25-30);
NAs: 0
29.1
(SD=1.17,
26-30);
NAs: 0
28.4
(SD=1.47,
25-30);
missing n=1
/

Demtec:
15.2
(SD=2.3, 8-
18); missing
n=9

28.9
(SD=1.24,
24-30);
NAs: 0

28.4
(SD=1.5,
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60-79)

AD_ADNI n=219 71.0
(SD=5.42;

60-79)

Old_OASIS3 n=298 70.3
(SD=4.42;
60-79)

MCI_OASIS3 n=74  70.9
(SD=4.58;
61-79)

AD_OASIS3 69.9
(SD=5.58;

60-79)

51.1%

50%

50%

47.2%

20); NAs: 0

Education  years:
16.1 (SD= 2.6, 11-
20); NAs: 0

Education  years:
16.0 (SD=2.7, 8-
24); NAs: 0

Education  years:
153 (SD=2.7, 8-
20); NAs: 0

Education  years:

15.1 (SD=2.8, 11-

20); NAs: 0

1.22,
SD=0.76,
0.5-4; NAs:
0
CDR  sum
of  boxes:
29, SD=
1.8, 0.5-10;
NAs: 0

0, SD = 0,
0-0; NAs: 0

0.5, SD=0,
0.5-0.5;
NAs: 0

0.92,
SD=0.57, 0-
2; NAs: 0

23-30);
NAs: 0

258 (SD=
3.0, 19-30);
NAs: 0

28.8
(SD=1.8, 9-
30); missing
n=2

26.7
(SD=3.4,
13-30);
missing n=2
23.5
(SD=4.8,
10-30);

missing n=1

Table 2. Demographic data of the age and disease groups created from independent samples

Phenotypical group Size (n)

Mean age (SD; age range)

% females

Young n=>538 27.1 (SD=3.95;20-34) 50.5

Middle age n=279 44.0 (SD=5.77; 35-54) 51.0%
Elderly n= 1218 68.9 (SD=5.07; 60-79) 50.2%
MCI n=287 69.7 (SD=4.98; 60-79) 50.2%
AD n=272  70.7 (SD = 5.46; 60-79) 50.4%
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Structural MRI acquisition, preprocessing and structural covariance

computation

Only 3T MRI anatomical scans were included in this study acquired with different scanning
parameters (Tab. 3). All images were preprocessed with SPM12 and the CAT12 toolbox,
running on Matlab R2016a. The normalization was performed with the DARTEL algorithm to
the ICBM-152 template using both affine and non-linear spatial normalization. The MRI
images were bias-field corrected and segmented into gray, white matter, and cerebrospinal
fluid tissues. The gray matter segments were then modulated for non-linear transformations
only and subsequently smoothed with an isotropic Gaussian kernel (full-width-half-maximum
=8).

We used a mask of the human hippocampus created in a previous study (Plachti et al., 2019)
from macro-anatomical atlas and cytoarchitecture maps. Structural covariance was computed
by correlating hippocampal voxels with all other grey matter voxels using Pearson
correlation, which were z-transformed. For each dataset, hundreds of bootstrap samples
(corresponding to the size of the dataset) were created and a respective structural covariance

matrix was computed for each bootstrap sample (see Supplemental material Methods).

Table 3. Sequence parameters of the different datasets

Datasets Sequence parameters

HCP T1 (3D-MPRAGE), Siemens Skyra, 256 slices, TR=2400 ms, TE=2.14 ms,
TI =1000ms, FoV=224x224mm>, flip angle = 8°, voxel size = 0.7 x 0.7 x 0.7
mm’

eNKI Cross Sectional Lifespan Connectomics and Longitudinal Developmental
Connectomics study: T1 (3D-MPRAGE), Tim Trio, 176, TR= 1900 ms, TE =
2.52 ms, TI= 900 ms, FoV =250 x 250 mm?, flip angle = 9°, voxel size = 1 x
1 x 1 mm’; Neurofeedback study: T1 (3D-MPRAGE), Tim Trio, 192 slices,
TR = 2600 ms, TE = 3.02 ms, TT = 900 ms, flip angle = 8°, voxel size =1 x 1
x 1 mm’

CamCAN T1 (3D-MPRAGE), Tim Trio, 192, TR=2250 ms TE= 2.98 ms, TI= 900 m:s,
FoV =256 x 256 mm’, flip angle = 9°, voxel size=1x 1 x | mm’

1000BRAINS T1 (3D-MPRAGE), Tim-TRIO, 176 slices, TR = 2.25 s, TE = 3.03 ms, TI =
900ms, FoV = 256 x 256mm’, flip angle = 9, voxel resolution = 1 x 1 x

lmm’
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ADNI ADNII: T1 (3D-MPRAGE), TR = 0.65 s, TE = min full, FoV = 256 x 256

mm?, flip angle = 8°, voxel resolution = 1.2 mm?>;

ADNIGO/2: T1 (3D-MPRAGE), TR = 0.4 s, TE = min full, FoV =256 x 256

mm?, flip angle = 11°, voxel size = 1.2 mm?;

ADNI3: T1 (3D-MPRAGE), TR = 2300 ms, TE = min full echo, TI = 900
ms, FoV =256 mm, resolution=1x 1 x 1mm3;
OASIS3 T1 (3D-MPRAGE), Tim Trio, TR = 2400 ms, TE = 3.08 ms, TI = 1, FoV =

256 x 256 mm’, flip angle = 8 °, voxel size=1x 1 x 1 mm’

Parcellation — clustering of hippocampus’ voxels— based on structural

covariance

Clustering

To identify patterns of similar and different structural covariance among hippocampus voxels,
we used an unsupervised clustering approach extensively applied in the field of brain
parcellation. More precisely, for each voxel within the hippocampus, an individual structural
covariance profile to all other brain voxels across subjects was computed. In the next step,
hippocampus’ voxels were clustered based on the similarity/dissimilarity of their profiles. As
a clustering algorithm we applied the k-means ++ algorithm in Matlab identifying two to
seven parcels. We used 255 iteration and 500 repetition parameters in line with Plachti et al.

(2019) to allow comparison with previous parcellations.

Split-half cross validation as stability measure

In order to identify which cluster solution best summarized similarity and dissimilarity in the
pattern of structural covariance of hippocampus’ voxels, we used split-half cross validation to
estimate the stability of differentiations. We divided each sample into halves 10 000 times
(splits) and compared with the adjusted Rand Index (aRI) the convergence between the two
halves. The aRI estimates the consistency of two clusterings and is adjusted for chance. It can
have values between 0 (not similar at all) and 1 (identical). A higher convergence reflects a
higher consistency of the clusterings indicating high stability. In order to quantify statistically

the stability of the different cluster solutions, we performed an ANOVA.
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Cross-dataset group parcellation

To obtain robust patterns of structural covariance parcellation in each age/disease group, we
merged after the clustering the parcellation results from different datasets corresponding to
the same age and disease group. This procedure aimed to extract patterns that captured the
relevant features under investigation (e.g. aging or dementia effects) rather than dataset
specific effects (Jockwitz et al., 2019). First, the clustering approach was applied on
hippocampus’ voxels structural covariance profiles within each sample and age group
resulting in sample-group-specific matrices. We then concatenated the solution matrix of one
sample (e.g. Young HCP) with all the other samples (e.g. Young eNKI, Young CamCAN)
belonging to the same age or disease group (e.g. Young) and applied bootstrapping (10 000
resampling) on the ‘merged’ solution matrix across bootstrap samples (see Supplemental

material Methods and Fig. 1).

Clusters’ covariance network and their relationship to functional large-scale

networks

In order to identify the pattern of structural covariance underlying the clustering in each
age/disease group (n=2584), we examined the network of structural covariance more
specifically associated to each cluster. To do so, we used the general linear model as
implemented in SPM, hence at the voxel level. Accordingly, at each voxel, the linear
relationship with the average grey matter value of the cluster of interest is tested. This
procedure provided some insight into the individual pattern of structural covariance of the
different subregions of the hippocampus that have driven the clustering. As the clustering is
not performed on any thresholded values but based on the full pattern of structural covariance,
we here examined the map of structural covariance of each cluster across the whole brain at
an uncorrected level of P < 0.001 with a threshold of T=1. Nevertheless, we additionally
corrected for multiple comparisons using family wise error (FWE) rate at the significance
level of P < 0.05 to examine the brain patterns that survived at a strict statistical threshold
(Supplementary Fig. 7).

To test whether structural covariance networks in dementia follow functional co-activation
networks, we examined the functional connectivity of the subregions derived in dementia but

in a sample of healthy participants. Our underlying hypothesis was that the pattern of co-
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atrophy in dementia could mirror functional connectivity patterns observed in late life (but
before dementia). To explore this question, we performed a similar general linear model
analysis using resting-state fMRI time-series in the group of healthy elderly (n=428 in
1000BRAINS; EPI, 36 slices, TR=2.2 s, TE=30 ms, FOV = 200 x 200 mm?, flip angel = 90 ’
voxel resolution =3.1 x 3.1 x 3.1 mm’) for the hippocampus’ subregions derived from the
dementia group. Preprocessing included movement correction by affine 2-pass registration
and alignment of the images to the first volume and to the mean of the volumes. The six
motion parameters and their first derivatives from the realignment step were regressed out.
Spatial normalization was performed to the MNI-152 Template for the average EPI scans for
each subject using the unified segmentation approach. Images were band-pass filtered with
cut-off values of 0.01-0.08 Hz and smoothed with the isotropic Gaussian kernel (full-width-
half-maximum = 5 mm). Denoising was performed using white-matter and CSF signal
regression.

For each grey matter voxel, a linear relationship with the average BOLD-response of the
cluster of interest was computed. In this way, we obtained the functional connectivity network
of each individual cluster and contrasted it against the whole brain pattern of association of

other clusters.

Clusters’ covariance network and their behavioral associations

After having identified the structural covariance network for each cluster, we characterized

those networks in terms of associated behavioral functions using NeuroSynth database

(https://neurosynth.org/) and its cognitive decoding tool with above 1 300 terms included. For

the most frequent terms reported in the literature (such as “episodic memory’’), NeuroSynth
provides meta-analytic maps of the most frequently associated voxels in activation studies. It
therefore offers the possibility to compare any given brain pattern, such as the whole brain
structural co-variation patterns in the present study, to the collection of maps related to each
term using the cognitive decoding tool. Accordingly, we used the uncorrected whole-brain
maps of each cluster and ran Pearson correlations between our structural covariance maps and
the meta-analytic maps of NeuroSynth. As our objective here was not to identify specific
behavioral functions associated to a specific network but rather to identify the broad pattern of
behavioral associations of cluster’s network, we included all correlations for associated terms

above 0.1, we excluded non-behavioral terms (e.g. hippocampus, dementia) and summarized

96



similar lexical terms into a summary label (e.i. ‘emotions’, ‘affect’, ‘happy’, ‘fear’ ->
emotion). The pattern of associated behavioral terms, which could differ in number depending
on the spatial extent the of clusters’ covariance pattern, was then interpreted qualitatively

rather than with regards to magnitude of association.

Data availability statement

The data that support the findings of this study are available from open science initiatives

reported and cited above. Code can be shared upon reasonable request from the corresponding

author. The derived clusters are available at (http://anima.fz-juelich.de/) as ROI in .nii format.

Results

Stable clustering level

We used split-half cross-validation (10 000 splits) to identify the most stable cluster solution
based on similarity across splits as measured by the aRI index. We performed a 6 (datasets:
HCP, eNKI, CamCAN, 1000BRAINS, ADNI, OASIS3) x 6 (cluster solution: 2-7) ANOVA
with the aRI as dependent variable. The ANOVAs were performed separately for each
hemisphere.

Overall, examining cluster solutions’ main effect F(5,839964) = 32365.18, P < 0.001), in the
right hippocampus, parcellations into 2 and 3 clusters were the most stable solutions even
though the differences between all cluster solutions were marginal: 2 (M=0.97,), 3 (M=0.96),
4 (M=0.95) (Fig. 1A). For the left hippocampus, cluster solution two and three were also the
most stable: 2 (M= 0.97), 3 (M= 0.96), 4 (M= 0.94), F(5,839964) = 25194.75, P < 0.001(Fig.
1A). The significant interaction effects in right and left hippocampi indicated that the stability
of parcellations was dependent on dataset, F(25, 839964) = 2006.7, P < 0.001, F(25,839964)
=4884.36, P <0.001 (Supplementary Fig. 2).

In line with previous clustering studies, our first exploration showed a relatively linear
decrease in the stability as the number of cluster increases, suggesting that the simpler, more
parsimonious models are the most robust ones (additionally supported by silhouette plots in
Supplemental material 2.2). In particular here, the 2- and 3- cluster solutions are the most

stable levels of differentiation.
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Similarity/consistency of the hippocampal differentiation

To further ensure that the stability of cluster solutions 2-4 was driven by intrinsic properties
of the structural covariance pattern rather than by intrinsic properties of the dataset, we
examined the pattern of similarity (measured by the aRI) between the different cohort samples
(Fig. 1B).

The inspection of the similarity matrices revealed that, cluster solution 2 showed a general
pattern of high similarity, whatever the dataset or age group. This suggested a global
differentiation being robust across data and age/disease group (Fig. 1B). The 3-cluster
solution mainly and remarkably showed a high within group (age and disease) and between
group consistency suggesting a differentiation pattern driven by intrinsic features of the
age/disease groups rather than by the intrinsic features of the dataset. This suggests that
neurobiological rather than technical factors specific to the dataset guided the parcellation.

In contrast, the 4-cluster solution showed high within age group consistency only for the
healthy elderly group in the right hippocampus, questioning its usability to study lifespan and
disease related changes. Finally, the higher clustering levels (5, 6 and 7-cluster solution)
showed overall relatively low similarity between samples (Supplementary Fig 2). Thus, the
investigations of consistency/similarity between samples supported the focus on the 3-cluster
solution as the most stable and most likely biological relevant pattern of differentiation of

hippocampus’ voxels.

In sum, our first ‘bottom-up’ examination of the differentiation of the hippocampus based on
structural covariance across different datasets suggested that a 3-cluster solution could
represent the data in a stable manner. Furthermore, our examination of consistency within age
and disease group suggested that this high stability is not primarily driven by characteristics
that were intrinsic to the dataset but rather by characteristics that were intrinsic to the
population group and hence driven by neurobiological factors. Thus, altogether, hippocampus
voxels within different age/disease groups could be optimally summarized with a 3-cluster
solution ideally applicable to study lifespan and disease alterations. Importantly, such
parsimonious 3-partition model also meets previous theories on hippocampus’ organization.

Even though cluster solution 2 and 4 displayed high stability and consistency compared to
higher differentiations, they were either less informative as in the case of cluster solution two
(Supplementary Fig. 5) or demonstrated qualitatively divergent parcellations less comparable

across age/disease group as in the case of cluster solution four (Supplementary Fig. 5).
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Building on these explorations of the data and previous knowledge, we then focused on the 3-

cluster solution pattern.
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Figure 1. A) Stable organizational patterns were found for right and left hippocampus for

cluster solution 2-4 estimated with split-half cross-validation. All clusterings reached very

high stability > 0.9 aRI. B) Cross-sample consistency of lower cluster solutions measured

with the aRI. Despite overall high stability, the simple parcellation schemes 2-4 were also

very consistent > 0.6 across datasets and within age/disease specific groups (e.g. young,

elderly) suggesting biological relevance in those differentiations. Cluster solution 3 was

exceptionally useful to study age and disease related patterns, because this scheme

demonstrated not only high within age/disease similarity but to some extent also across

age/diesease groups indicating relatedness, which did not apply for cluster solution 4. In
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contrast cluster solution 2 showed very high similarity independent of age/disease and dataset
suggesting on the one hand a robust biological differentiation, but on the other hand a less
flexible scheme to represent lifespan and pathological alterations. Boxplots with median, 1.5

interquartile range, min. Q1-1.5*IQR, max. Q3+1.5*IQR.

Cross-dataset age and disease group parcellation

After deriving parcellations in each cohort sample, we merged them to obtain a robust pattern
of differentiation of hippocampus voxels for five different age and disease groups: young,
middle-aged, elderly, MCI and dementia patients using a bootstrapping approach to further
promote stability. This aggregation was done separately for the left and right hippocampi.
Nevertheless, a very symmetrical pattern of differentiation could be observed across
hemispheres. For both hippocampi, our maps (Fig. 2) showed a very similar pattern for the
young, middle-aged, elderly and the MCI group. This pattern highlighted a division in the
medial-lateral dimension of the hippocampus’ body and to some extent, of the tail while the
head appeared as a relatively homogeneous region. This pattern replicated the findings from
our previous parcellation work in the hippocampus performed in a sample of young
participants from the HCP dataset (Plachti et al., 2019), and as already highlighted in our
previous study, is reminiscent of the medial-lateral differentiation between CA and subiculum
subfields known from cytoarchitecture. Of note, it seemed that with increasing age the head
cluster decreased slightly in size, while the medial (blue) cluster expanded into the tail area
and the lateral (green) cluster expanded into the anterior direction (Fig. 2).

Remarkably, the differentiation of the hippocampus in the dementia group deviated from the
pattern that was observed in healthy population across adult age. Despite the anterior
subregion also appeared as a relatively homogeneous region, the lateral (green) cluster was
focused on the hippocampus body while the medial (blue) cluster appeared more prominent in
the tail. As illustrated in Figure 2, this pattern was reminiscent of the functional differentiation
along the anterior-posterior dimension (and hence “head-body-tail” tripartite model) observed
in parcellations using large-scale functional connectivity. In order to further quantitatively
evaluate these apparent divergences and resemblances, we compared the similarity of the age
and disease groups among each other and with the functional map of the hippocampus derived

in healthy adult fMRI data (Plachti et al., 2019) using the aRI.
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Strikingly, the highest similarity with the hippocampus’ functional map was found for the
parcellation pattern obtained in dementia. This finding suggested that over time, the structural
changes in the hippocampus in the pathological condition of dementia followed the large-
scale functional organization of the hippocampus. Interestingly, this tendency was higher for
the right than for the left hippocampus. Finally, it is worth noting that the pattern in
participants with MCI was more similar to the healthy middle-aged and elderly participants

than to the pattern observed in dementia.
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Figure 2. Age and disease specific clusterings of the hippocampus and its similarity to
functional differentiation into head, body and tail parcellation. In younger age the
hippocampal differentiation was reminiscent of the differentiation between subiculum vs.

CA1-4 and dentate gyrus subfields. With increasing age the lateral subregion decreased from
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the tail, whereas the differentiation in dementia was reminiscent of the functional

differentiation into head, body and tail also suggested by the similarity estimation.

Whole brain structural covariance patterns of each cluster

In order to better understand the structural covariance patterns that drove the differentiation
among hippocampus’ voxels in each age/disease group, we examined the specific structural
covariance pattern of each cluster and this, separately in each age/disease group. The
structural covariance networks for young, elderly adults and dementia patients are presented
below while the results obtained in middle aged and MCI participants (that were in line with
other non-demented groups) are presented in Supplementary Fig. 6.

In young participants the (red) anterior cluster was associated with wide fronto-temporal and
parietal networks including frontal medial cortex, superior frontal gyrus, orbitofrontal cortex,
cingulate cortex, temporal lobe, parahippocampal gyrus, (pre-)cuneal cortex, calcarine cortex,
lingual gyrus and occipital pole. In addition, the putamen, pallidum, amygdala, insular cortex
belonged to this network. A similar pattern was found in healthy elderly participants despite a
slight expansion, additionally covering the inferior frontal gyrus, the whole cerebellum, pre-
and postcentral gyri (Fig. 3).

The lateral (green) cluster in the young group was mainly associated with subcortical
structures such as putamen, pallidum, nucleus caudatus, thalamus but also with the cingulate
gyrus, lingual gyrus, precuneous cortex and intracalcarine/supracalcarine cortex. Additionally,
frontal and temporal brain regions were included such as frontal orbital cortex, frontal
operculum cortex, inferior frontal gyrus, pars opercularis and superior temporal gyrus. In the
older group, this network mainly reduced to the parieto-occipital (posterior cingulate cortex,
precuneous, lingual and intracalcarine gyrus) and frontal medial (frontal medial cortex,
subcallocal cortex, frontal pole) brain regions reminiscent of the Default mode network.

The blue medial cluster in the group of young adults was mostly related to middle frontal,
middle temporal gyri, cerebellum and lateral occipital cortex. Subcortical regions such as the
caudate and thalamus, but also the insula were included. Interestingly, the (blue) medial
cluster showed in the group of healthy elderly a very broad pattern of structural covariation
(Fig 3), especially in the posterior brain regions (e.g. parietal, occipital lobes and motor
related regions: cerebellum, pre-postcentral gyrus, thalamus, putamen, but also occipital
gyrus, superior parietal lobule, and temporal gyri). Some smaller associated regions were also

found in the inferior frontal and middle frontal cortex.
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In contrast, in the group of patients with dementia, the pattern of structural covariance of each
cluster was less spatially extended compared to all the other groups (Fig 3). Furthermore, the
pattern was also qualitatively different when compared to the patterns of the three clusters in
the other age/disease groups confirming that the differentiation into subregions within the
hippocampus itself is qualitatively different and did not follow the known pattern of healthy
aging. Hence, the (green) lateral-body cluster was not associated with posterior subcortical
structures as the lateral (green) cluster in other groups but rather was more specifically
associated with structures in the frontal (inferior frontal gyrus pars opercularis, frontal pole,
opercular gyrus), temporal (middle temporal gyrus, Heschl’s gyrus) and occipital brain
regions (Fig. 3). In contrast, the (blue) tail cluster was more associated with posterior brain
regions (posterior parts of the temporal lobe, postcentral gyrus and (pre)cuneous, angular
gyrus) while the anterior cluster was more associated with temporal, temporo-occipital
fusiform cortex, and parietal regions loosing mainly its co-variation with frontal regions
compared to younger healthy adults.

Because of apparent similarity between structural differentiation of the hippocampus in the
dementia group with the functional organization model of the hippocampus known from
previous studies in the healthy population, we further explored the relationship between
functional and structural networks. More concretely, we investigated the pattern of resting-
state functional connectivity in the later life period of healthy participants (i.e. in healthy older
adults) of the hippocampus’ cluster derived in dementia patients. This exploratory analysis
suggested that the functional networks of the anterior and the lateral clusters that can be
observed in an aging population are very similar to their structural networks observed in
patients with dementia hence further supporting the hypothesis of a an influence of large-scale

functional interaction in the co-atrophy pattern in dementia.
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Figure 3. Patterns of structural covariance of each hippocampus’ subregions in young, elderly
and dementia groups. Relative resting state-functional connectivity networks of dementia-
hippocampus in healthy elderly resembled structural co-variation networks of dementia

hippocampus in dementia group. Uncorrected (P < 0.001), thresholded T=1.
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Behavioral characterization of clusters’ structural covariance networks

In order to explore whether the structural covariance patterns of each cluster could reflect
functional networks subserving specific behavioral functions, we characterized the spatial
pattern of each cluster’s covariance network with regards to behavioral terms with
NeuroSynth. Results of middle aged and MCI patients are presented in Supplementary (Fig.
10) while we here focused on the associations in the young, elderly and the dementia group,
as showing a slightly different pattern.

Overall, the spatial pattern of the anterior (red) cluster was primarily associated with
emotional, perceptual (olfactory, viewing) and self-related (autobiographical) terms, but also
with other less ontologically defined terms such as faces, ratings and reactivity (Fig. 4).
Overall, this behavioral pattern pointed to an automatic and more perceptual-emotional
processing and integration of information into self-related internal states. This behavioral
profile of the anterior subregion was even preserved in dementia pathology. In contrast, the
pattern of the lateral (green) and the medial (blue) clusters’ diverged depending on the age
and disease group. Whereas the medial blue clusters’ networks in the group of healthy young
adults was associated with visual processing of objects and places, in the group of elderly and
dementia patients, however, it was behaviorally additionally associated with motor/movement
and orientation (Fig.4).

Most changes in structural co-variation and behavior were observed for the lateral (green)
cluster. In the group of young healthy adults the network was associated with motor-related
behavior (e.g. motor, navigation), whereas in the elderly the behavioral association suggested
an involvement of storing self-related information (e.g. autobiographic memory, episodic
memory). In the group of dementia patients, on the other hand, the network was primarily
associated with communication and social cognition, both of its own internal states (e.g. pain)
as well as external information (e.g. comprehension, theory of mind). Overall, these results
suggested that, the changes in the patterns of structural co-variation of the medial and lateral
clusters over the lifespan and in pathology could be related to associations with different

behavioral functions.
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Figure 4. Behavioral characterization of clusters’ co-variance network in age and disease
groups using NeuroSynth. Behavioral profiles of anterior cluster’s co-variance network
remained relatively stable across the lifespan and in disease playing a major role in automatic
perceptual-emotional approach-behavior in learning, establishing self-related memories.
Across the lifespan the medial (blue) subregion’s network changed from being associated
with visual processing in younger years to being also motor-related in older age. The lateral-
body (green) subregion in the group of dementia was behaviorally associated with language
and theory of mind processing while the lateral subregion did not show a clear behavioral

specificity in the second half of lifespan compared to the anterior subregion.
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Discussion

The hippocampus is susceptible to senescence and neurodegenerative processes but the
patterns of structural changes at the macro-scale revealed inconsistencies across studies.
Observed changes in grey matter volume could be either constrained by micro-anatomical
organization of the cytoarchitecture or follow an organization determined by lifelong
functional large-scale networks.

In a previous recent study, we used a parcellation approach to study human hippocampus
organization with a multimodal parcellation approach. We hence examined the pattern of
structural covariance in the human hippocampus in healthy young adults and found a
topology that mimics both medial-lateral differentiation from cytoarchitecture and anterior-
posterior differentiation shown by functional connectivity profiles (Plachti et al., 2019). A
similar pattern was found in a very recent study using a similar population but different
parcellation approaches (Ge et al., 2019), and was reproduced again in this study, hence
suggesting that this pattern reflects a robust pattern of co-plasticity in young adults.

We here investigated if structural changes represented in co-variations in older age and
dementia follow or deviate from the patterns of co-plasticity observed in young adults. Our
results indicated that during aging the overall pattern of structural covariance follows the
pattern of structural covariance observed in young adult age with some small differences
discussed below. However, in participants with probable dementia disease, the pattern of co-
atrophy in the hippocampus deviates from what was observed in these healthy populations. In
patients with dementia, the co-atrophy seems to follow the functional large-scale networks
with a pattern that resembles more than the functional model of hippocampus’ organization
than what was observed in other groups. Overall, the most prominent differences between
groups in the differentiation patterns of the hippocampus were found in the body and tail
whereas the head always appears as a uniform region. Group differences were shown not only
in the topological pattern within the hippocampus, but also in the whole brain structural

covariance pattern that drove the clustering and their associated behavioral associations.

Consistent pattern of head differentiation in hippocampus’ structural covariance

across the lifespan

Independent of age and disease, the head of the hippocampus, emerged consistently as one

homogeneous subregion, except for some minor reductions with higher age and ongoing
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pathology. But the actual underlying covariance pattern of the anterior hippocampal subregion
changed across age/disease groups. In young adulthood the anterior hippocampal co-variation
pattern was characterized by a broad network extending across frontal, temporal and occipital
lobes as well as (inferior) parietal regions. In accordance with the large spatial distribution of
this network, behavioral associations showed a relatively broader spectrum including
emotional, cognitive and perceptual processes. These results could suggest that the
hippocampus head is a plastic region (based for example on cell proliferation in the dentate
gyrus, (van Praag, Shubert, Zhao, & Gage, 2005) during the lifespan), which structure is
modulated by rich functional interaction with large-scale brain networks subserving various
behavioral functions. The structural covariance networks of the hippocampus head in early
and late adulthood demonstrated that the anterior hippocampus co-varied with the same brain
regions in both halves of healthy lifespan suggesting a perseverance of co-plasticity and
resilience. However, in dementia the structural covariance network of the anterior subregion

decreased mainly to the temporal lobe suggesting a loss of network.

Consistent pattern of medial-lateral differentiation in hippocampus’ structural

covariance

Across different age groups of the healthy population, we found a consistent differentiation
pattern along the medial-lateral dimension of the hippocampus dividing it into a lateral and a
medial subregion. This pattern replicated previous findings and seemed to follow the
cytoarchitectonic differentiation between the CA and subiculum subfields (Plachti et al.,
2019). Importantly, this pattern, like the head subregion, appeared to remain stable across the
whole adult lifespan suggesting a very strong and robust scheme of structural covariance that
should be referred to when studying structural changes with MRI in adults. This scheme was
even further retained when subdividing the hippocampus into 4 subregions in healthy adults
and MCI patients (Supplementary Fig. 5), even if, one additional cluster appeared either in the
anterior or posterior-lateral region depending on the age/disease group. Even though the
differentiation into a lateral and medial parcel was preserved over the lifespan, the lateral
cluster decreased posteriorly with age and the medial cluster expanded into the tail. This
change in the cluster pattern was reflected both in the associated structural pattern and the

related behavioral associations.
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The medial hippocampal subdivision showed a co-variation pattern with occipito-parietal,
temporal (middle temporal gyrus), and frontal (inferior and middle frontal gyri) brain regions.
Furthermore, the network included subcortical brain regions such as thalamus, caudate, and
insula. With increasing age, the covariance network expanded highly in size, especially
covering posterior brain regions. The shift from mostly anteriorly associated brain regions in
younger years to posteriorly associated regions in elderly is not unusual for the hippocampus.
It has already been reported in functional connectivity (Blum, Habeck, Steffener, Razlighi, &
Stern, 2014; Stark, Frithsen, & Stark, 2019), in structural covariance studies (X. Li, Li, Wang,
Li, & Li, 2018), and for anatomical connectivity with strengthened connections to medial
occipital regions (Maller et al., 2019), which was in line with our results, even though the
responsible mechanisms remain to be elucidated.

These alterations were also mirrored in the behavioral association patterns. While in younger
adults visual cognition (e.g. object, place, encoding, familiarity) was prominent, in elderly,
however, the behavioral spectrum expanded to language processing as well as to motor
related (learning) behavior. Both, structural co-variation networks and behavioral profiling,
suggest that brain regions connected by the inferior longitudinal fasciculus (ILF) co-vary
more likely with the medial subregion of the hippocampus. The ILF is an occipito-temporal
association tract with close relationships to the occipital radiations and hippocampus through
the tapetum (Herbet, Zemmoura, & Duffau, 2018). The ILF is behaviorally associated with
visual object and face recognition, reading as well as lexical and semantic processing (Herbet
et al., 2018), which is in accordance with our behavioral profiling of the medial subregion

across the lifespan.

While the medial cluster expanded into the tail during healthy aging, the lateral cluster
decreased from the tail. The lateral subregion’s co-variance network in young adulthood
yielded primarily associations with subcortical regions (e.g. thalamus, caudate nuclei) and
additionally with the parieto-occipital fissure. Anatomically those associated brain regions
were reminiscent to some extent to the grey matter regions around the dorsal hippocampal
commissure, being connected with posterior cingulum, tapetum, and fornix (Postans et al.,
2019). The dorsal hippocampal commissure is associated with learning, memory and recently
also with recognition (Postans et al., 2019). The fornix is the white matter output of the
hippocampus through the tail (R. S. C. Amaral et al., 2018) whereas the tapetum transfers
information between hemispheres. The hippocampus is connected via the fornix with limbic

structures (e.i. hypothalamus, thalamus, nucleus accumbens) (Douet & Chang, 2015), and has

109



been suggested to play a major role in transferring information from short-term to long-term
memory via the Papez circuit and is accordingly, involved in long-term memory encoding and
retrieval (Douet & Chang, 2015; Eichenbaum, Yonelinas, & Ranganath, 2007; Foster,
Kennedy, Hoagey, & Rodrigue, 2019).

Structural covariance pattern in the hippocampus in dementia resemble

functional organization

In healthy population, structural covariance across the brain is assumed to reflect
maturational, developmental and experience-based co-plasticity (Alexander-Bloch et al.,
2013; Geng et al., 2017). In patients with neurodegenerative disorders, structural covariance
across the brain could be expected to mainly reflect brain structure co-atrophy. The moderate
to high convergence between structural covariance and task-(un)related functional
connectivity (Kotkowski et al., 2018; Paquola, Bennett, & Lagopoulos, 2018; Reid et al.,
2016; Shah et al., 2018) suggests that abnormalities in structural and functional network
topology is predictive of brain disorders (Goodkind et al., 2015; Seeley et al., 2009) and
weaker cognitive performance (McTeague, Goodkind, & Etkin, 2016; Montembeault et al.,
2016; Spreng & Turner, 2013). However, the question remains fully open whether structural
atrophy changes functional BOLD response (He et al., 2007) or the other way around (Chang,
Huang, Chang, Lee, & Chang, 2018). From a neuropathological standpoint, Alzheimer’s
pathology is assumed to follow a specific topological pattern distributed along large-scale
networks (Braak & Braak, 1991; Corder et al., 2000; Montembeault et al., 2016). For
example, amyloid-plaque distribution in the brain seems to follow functional organization
mirrored in the Default mode network (DMN) (Buckner et al., 2005; Klunk et al., 2004;
Montembeault et al., 2016). Similarly, the spreading of tau neurofibrillary tangles seems to
follow a functional pattern, which is not explained by spatial proximity (Franzmeier et al.,
2019). In other words, brain regions that are more likely to be functionally coupled together
share a stronger tau covariance, which is not explained by pure spatial neighborhood. This
apparent convergence between spatial distribution of pathology markers and the spatial
organization of functional networks may be explained by the fact that synchronous neuronal
firing establishes a network-based synaptogenesis (Bi & Poo, 1999; Katz & Shatz, 1996),

which can then be assumed to be vulnerable to pathological processes.

110



Linking these neuropathological considerations to the pattern of differentiation based on
structural covariance found in the hippocampus of patients with probable AD in this study, we
can hypothesize that the pattern of co-atrophy in these patients followed the pattern of
functional organization subserving broad behavioral functions. In this regard, we can note that
the pattern of structural covariance networks of the hippocampal body in dementia patients in
this study was associated with temporal and frontal regions in turn associated with
comprehension, language, orthography and theory of mind. We hypothesize that the structural
covariance network of the hippocampus’ body reflects a functional network of higher
cognitive functions of social cognition additionally supported by the functional co-activation
pattern of the lateral-body subregion when applied to healthy elderly. It therefore emphasizes,
that the hippocampal differentiation based on structural covariance in dementia follows
functional differentiation. Overall our findings point to the necessity of accounting for
hippocampus’ functional organization related to large-scale networks subserving broad
behavioral functions when studying hippocampus’ structural changes at the macro-scale in

dementia.
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Supplemental material

Supplementary material is available at Brain online.

1 Methods

Age and disease specific cluster solutions based on bootstrapping

In this study, a bootstrapping approach was applied following a two steps procedure. First, we
created bootstrap samples at the step of computation of the covariance matrices (correlating
seed and target grey matter values) (Fig. 1). In a second step, bootstrapping was applied after
having generated the clustering of each bootstrap samples.

In the first case, the bootstrap number was identical to the sample size generating as many
bootstrap samples as participants in the sample. As bootstrapping is resampling with
replacement, different versions of the original sample were generated. The covariance
matrices for each bootstrap sample were computed by correlating the seed and target matrices
within each generated bootstrap sample. Afterwards, we applied the clustering algorithm on
these covariance matrices resulting in a solution matrix for each dataset-group (e.g.
HCP_young, eNKI old etc). This solution matrix contained, for each bootstrap sample (i.e.
for each different version of the original sample), the assignment of each seed voxel to a
cluster (i.e. the clustering). We merged the dataset and group specific matrices into one
group-specific matrix (e.g. HCP_Young, eNKI Young and CamCAN_Young => Young)
containing for each bootstrap sample, the cluster assignment of each voxel. We again applied
bootstrapping (10 000 iterations) on the group specific merged (across datasets) solution
matrix to ensure further stability and to eliminate further noise. In other words, we
bootstrapped the bootstrap samples containing the clustering (assignment of voxels to
clusters). After this step the final matrix contained the final (“stable”) cluster assignment of

each seed-voxel by taking the mode for each seed-voxel across 10 000 bootstrap samples

(Fig. 1).
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Figure 1. lllustration for the computation of a stable clustering with a bootstrapping approach.

2 Results

2.1 Clusters’ stability and consistency
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Simple cluster solutions (2 and 3) were more stable than partitions of higher granularity and
were dependent on dataset and age/disease group. In several datasets, stability seemed to
increase (or to remain stable) from 2 to 3 cluster solutions in both the right (in HCP,
1000BRAINS and eNKI) and left (in eNKI, I000BRAINS and OASIS3) hippocampi (Fig.1).
In contrast, a clear increase in stability from 3 to 4 clusters solution was only observed in the
CamCAN dataset (n=94) suggesting that this pattern could be dataset specific.

We additionally examined whether stability of clusters was also dependent on age and disease
group and performed a 5 (age/disease group: young, middle age, elderly, MCI, dementia) x 6
(cluster solution: 2-7) ANOVA with the aRI as dependent variable. The ANOVAs were
performed separately for each hemisphere.

For the right hippocampus all main and the interaction effects were significant: cluster
solution, F(5,839970)=45388.74, P < 0.001, age/disease group, F(4,839970) = 24244.72, P <
0.001, cluster solution x age/disease group, F(20,839970) = 5406.63, P < 0.001. Post-hoc
Bonferroni corrected multiple comparison computations revealed that MCI was the
age/disease group with the most stable cluster solutions (aRI=0.95), followed by young
(aRI=0.94) and elderly (aRI = 0.94), middle aged (aRI=93), and dementia (aRI= 0.90).

For the left hippocampus all main and the interaction effects were also significant: cluster
solution, F(5,839970) = 20243.24, P < 0.001, age/disease group, F(4,839970) = 8929.86, P <
0.001, cluster solution x age/disease group, F(20,839970) = 259.13, P < 0.001. Post-hoc
Bonferroni corrected multiple comparison computations revealed that elderly had the most
stable partitions (aRI1=0.94), followed by MCI (aRI=0.94), young (aRI = 0.93), middle aged
(aRI=0.92) and dementia (aRI = 0.93).

The most stable cluster solutions were 2 (right aRI=0.96, left aRI =0.96), 3 (right aR1=0.95,
left aR1=0.95), and 4 (right aR1=0.94, left aRI =0.94) followed by 5 (right aRI=0.91, left aRI
=0.92) and 6 (right aR1=0.91, left aRI = 0.92), and 7 (right aR1=0.90, left aRI = 0.93).

Overall, more basic cluster solutions such as 2, 3 and 4 were preferred compared to higher
granularities in different age/disease groups (Fig. 2). Except for the MCI group the stability
for all the other groups dropped after cluster solution 4 indicating less consistency in the

differentiations.
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Figure 2. A) Clusters’ stability dependent on dataset and age/disease groups. Lower cluster
solutions (2-4) demonstrated a higher stability compared to higher cluster solutions, even
though the stability was overall high > .85. B) Clusters’ consistency across dataset and
age/disease was low for higher cluster solutions (5-7) indicating higher heterogeneity in

higher granularities possibly due to dataset intrinsic features.

2.2 Silhouette estimation of clusterings

The choice of the optimal cluster solution was guided by three criteria. To estimate the
internal validity, we used stability measures estimated with split-half cross-validation and
consistency measure using the mean silhouette values. As an approximation of external
validity, we assessed the consistency of parcellations across datasets and age/disease specific
groups.

Based on the silhouette value, our results indicated that cluster solution 2 and 3 (across all age
and disease groups) provide the best data representation of voxels’ differentiation in the
hippocampus (Fig. 3). This result was in accordance with our previous results based on split-
half cross validation and based on consistency across groups and datasets.

The silhouette value was defined in terms of both similarity and distance metric comparing
cluster compactness to cluster separation. Silhouette values can range between -1 and +1.
Higher positive values indicate a better fit of each individual voxel to the cluster it was
assigned to. Negative values indicate a poor fit in the assignment.

We tested with an ANOVA whether silhouette values were significantly different between
groups (young, middle-aged, elderly, MCI and dementia) and cluster solutions (k=2:7),
revealing significant main effects of group, [F(4,25920) = 30.26, P < 0.0001 for right
hippocampus; F(4,24900)=25.73, P < 0.001 for the left hippocampus], cluster solutions,
[F(5,25920)=693.6, P < 0.0001 for right hippocampus; F(5,24900)=586.27, P < 0.001 for left
hippocampus] and the interaction effect, [F(20,25920) = 17.48, P < 0.0001 for right
hippocampus; F(20,24900)=8.09, P < 0.001 for left hippocampus].

More simplistic differentiations into 2, 3 and 4 clusters had significantly higher silhouette
values compared to subdivision patterns of higher granularity for both, right and left
hippocampus (P < 0.001, Bonferroni corrected comparisons revealed (P < 0.001). But there
was no significant difference between cluster solution 5 and 6 (P =0.32 for right hippocampus

and P = 0.62 for left hippocampus).
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Post-hoc Bonferroni corrected multiple comparisons showed that parcellations in young and
middle-aged participants had lower silhouette values compared to all the other groups (young
vs all the other groups P < 0.001 for right hippocampus; young and middle aged (P = 0.77)
compared to all the other groups P < 0.001 for the left hippocampus). There was no
significant difference in silhouette values between the group of elderly and dementia patients
(P = 0.39 for left hippocampus).

In sum, the silhouette metric supported cluster solution 2 and 3 as optimal subdivisions for the

hippocampus across age and disease groups.
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Figure 3. Silhouette measure for right and left hippocampus across age and disease groups
and cluster solutions. Boxplots show the median, 1.5 interquartile range, min. Q1-1.5*IQR,
max. Q3+1.5*IQR.
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2.3 Dataset specific similarity of cluster solution three

Cluster solution 3 showed very high similarity across datasets and age/disease groups dividing
the hippocampus in an anterior head region, lateral and medial subregions. Independent of
dataset, in the group of young adulthood the tail was covered by the lateral (green) parcel,
whereas with increasing age the lateral subregion decreased gradually from the tail. The
parcellation in the CamCAN young sample did not follow this differentiation probably due to

either a high variability within a small sample size (n=94) or dataset specific intrinsic

features.
Sample dependent stable cluster solutions
young middle aged
HCP, n=304 eNKI, n=140 CamCAN, n=94 eNKI, n=72  CamCAN, n=207
elderly
1000BRAINS, n=492  eNKI, n=76 CamCAN, n=213  ADNI, n=139 OASIS3, n=298

MCI dementia

ADNI, n=213 OASIS3, n=74 ADNI, n=219 OASIS3, n=53

QO

Figure 4. Sample and age/disease specific 3-cluster solution differentiation. Overall

hippocampal parcellation showed a high similarity for each age/disease group even though
derived from different datasets. In cases where high variability is to expect (young, middle
aged and MCI patients) clusterings diverged slightly coming from different datasets.
CamCAN young and OASIS old slightly dropped out from the overall phenotype

parcellation pattern.
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2.4 Age and disease specific differentiation of cluster solution two and three

Based on stability and consistency measures we chose cluster solution 3 to study lifespan and
disease related alterations, as this differentiation seemed to be more neurobiologically
informative than others. First, the differentiation into 3 clusters was stable enough to ensure
that we measured the same biological feature. Secondly, despite stability, it also captured age
and disease dependent divergences that better reflected co-plasticity and co-atrophy than
cluster solution 2. Indeed the differentiation into 2 clusters was more stable than cluster
solution 3 but it was less suitable to study alterations, as this differentiation mirrored a very
stable simple partition into one anterior and one posterior subregion independent of age and
disease condition (Fig. 5). On the other hand, cluster solution 4 was less stable and more
diverse in its qualitatively unique differentiation pattern across age/disease groups, which
showed less convergence between groups (Fig. 5), and therefore challenging to study related
features of aging and dementia. In the group of young and middle aged healthy adults, the
subdivision into 4 parcels resulted in an additional cluster in the head hippocampus, whereas
in healthy elderly and in MCI patients the posterior lateral subregion was subdivided
additionally in the tail. In dementia, however, the fourth subregion emerged in the medial
head-body region, illustrating high divergence between age/disease groups.

Overall, as already summarized in our analysis the composition of stability and consistency of
differentiations driven by age/disease specific intrinsic characteristics are better represented in

cluster solution 3 compared to 2 and 4.
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Age and disease specific clusters: Cluster solution 2

young middle aged elderly dementia
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Age and disease specific clusters: Cluster solution 4
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Figure 5. Age/disease specific and stable differentiations of the hippocampus into 2 and 4

parcels.

2.5 Hippocampal structural covariance networks

Uncorrected and corrected structural co-variance networks across age/disease groups.

Age and disease specific clusterings’ SC-networks
SC-networks in middle aged

Figure 6. Uncorrected (P < 0.001, T=1) structural covariance networks of hippocampal

clusters in middle age and MCI age/disease group.
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Age and disease specific clusterings’ SC-networks

SC-networks in young

Figure 7. Corrected (FWE, P < 0.05, T=4.46) structural covariance networks of hippocampal

clusters dependent on age/disease groups.

2.6 Harmonized hippocampal structural covariance networks

In order to account for data coming from different sites the grey matter values that were used
for the general linear model in SPM to obtain underlying structural covariance networks of

hippocampal subregions, were harmonized. To reduce site related noise, we harmonized the
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grey matter values (https://github.com/Jfortinl/ComBatHarmonization) (Fortin et al., 2018)

across sites n=71, before performing general linear model computations. The primary
function of harmonization is to reduce unwanted, non-biological sources of variance related to
MRI scanners and sites such as field strength, manufacturer and divergent scanning protocols
(Fortin et al., 2018). Harmonized hippocampal structural covariance networks are represented

in Fig. 8 and Fig. 9 showing similar patterns compared to non-harmonized data.

Structural covariance networks after harmonization

SC-networks in young

Figure 8. Uncorrected (P < 0.001, T=1) hippocampus associated structural covariance

networks derived after harmonization of grey matter values.
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Age and disease specific clusterings’ SC-networks after

harmonization
SC-networks in young

Figure 9. Corrected (FWE, P < 0.05, T=4.46) structural covariance networks of hippocampal

clusters derived after harmonization of grey matter values.
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2.7 Behavioral profiling of clusters’ structural covariance networks

In the group of middle-aged participants and MCI patients the behavioral profile of the
anterior and medial cluster did not change compared to other healthy age groups. The anterior
cluster was involved in the perceptual-emotional-regulatory processing of information into
self-relevant internal memories. The medial (blue) cluster was associated with motor
exploration and orientation behavior (Fig. 10), but in MCI patients the medial (blue) cluster
was additionally related to behavioral terms such as recognition, recollection and retrieval.

In both groups of middle-aged and MCI patients, the behavioral association of the lateral
(green) cluster was less distinctive compared to the anterior and medial clusters. In MCI
patients it was related to autobiographical memory, episodic memory and retrieval, all terms

also related to either the medial or anterior parcel.

Behavioral characterization of SC-networks
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Figure 10. Behavioral characterization of structural covariance networks in the group of

middle aged healthy adults and MCI patients.
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3 Discussion

Structural covariance pattern in the hippocampus in MCI resemble healthy

adults’ pattern

In addition to our observations that the pattern of hippocampus differentiation based on
structural covariance remained similar across age groups, we also found that this pattern was
replicated in patients with mild cognitive impairment, despite an ongoing decrease in the tail
of the lateral (green) subregion. Accordingly, the hippocampus’ differentiation pattern in MCI
represents a transition model between normal covariance in healthy aging and co-atrophy
caused by pathology of dementia. One reason for a higher similarity with healthy elderly in
this study might be the criteria of selection of the MCI patients. We here selected only
patients with a strict very mild cognitive impairment (e.g. ADNI sample) by excluding
patients with more pronounced memory deficits associated with Alzheimer’s disease. In other
words, we have excluded patients who were likely to be patients with Alzheimer-type
pathology at the early stage of the disease (late MCI). We therefore hypothesize that some
participants were patients at a so early stage of Alzheimer’s disease that pathology hasn’t
affected brain structure in a way that would result in qualitatively different disease-related

structural covariance patterns.

Asymmetrical differentiation pattern of the hippocampus in dementia

We found asymmetric differentiation patterns in our study for the right and left hippocampus,
which were especially evident in the MCI and dementia group with the left hippocampus
seemingly being more affected by disease. In MCI, this could be inferred by a higher decrease
of the lateral-green cluster from the tail and, in dementia, by a higher extension of the lateral-
body cluster into the medial direction. Higher left hippocampal susceptibility was already
reported several times in the context of volume reductions in dementia and MCI (Lindberg et
al., 2012; Miiller et al., 2005; Shi et al., 2009). It has been hypothesized that aging and disease
affect more likely the left hemisphere than the right hemisphere. Nevertheless, a meta-
analysis by Minkova et al. (2017) suggested a lack of support for this hypothesis, despite a
tendency for the right hippocampus to be more atrophied in MCI and the left hippocampus
being more affected in AD. Global lateralized atrophy as assessed by Minkova et al. (2017)

might appear late in pathology or with increase in disease severity. In contrast, lateralized
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differentiation patterns as investigated in the present study, seem to be more evident in the
hippocampus in dementia. Future studies could reveal under which circumstances lateralized

differentiation patterns and lateralized atrophy arise.
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4 General Discussion

Hippocampal organization was primary known based on micro-anatomical features of
cytoarchitecture revealing a differentiation pattern along the medial-lateral and dorsal-ventral
dimensions, whereas functional studies suggested a differentiation along the longitudinal axis.
Since hippocampal maps based on large-scale networks at the macro-level were missing, the
overarching aim of this thesis was to explore hippocampal organization based on large-scale
networks. Therefore different MRI modalities such as task-(un)related functional connectivity
and structural covariance were used in order to investigate the hippocampus from different
perspectives.

As hypothesized hippocampal maps of both functional MRI modalities, MACM and RSFC,
were more similar to each other than to structural covariance. Moreover, as already indicated
by animal studies and suggested by some researchers in humans, we found that the
hippocampus was primarily organized along the longitudinal axis based on functional
connectivity, especially for simpler patterns of 3 and 5 clusters. More complex differentiation
patterns of 7 subregions, however, indicated a differentiation along the medial-lateral
dimension in addition to the anterior-posterior dimension. Hippocampal maps based on
structural covariance revealed an extraordinary differentiation pattern. With a head subregion
the maps mirrored an anterior-posterior subdivision but with the posterior hippocampus being
divided into a medial and a lateral subregion, they represented mainly a pattern along the
medial-lateral dimension.

One of the challenges of the first study was to ensure stable differentiation patterns while
using RSFC, which is especially prone to noise, be it motion or respiration artifacts. To test
for the best denoising strategy, two criteria were applied: a) how well were artifacts removed
and b) how well was it possible to discriminate between voxels within the hippocampus,
which was relevant for stable clustering patterns. Optimal results were achieved with the
combination of a model-based and a model-free denoising strategy, FIX+WM/CSF
regression. It reduced structured noise and enhanced the dissimilarity of connectivity profiles
of hippocampal voxels, facilitating to differentiate between voxels’ profiles and hence
clustering.

Another aim of the study was to test whether hippocampal organization is related to a specific
behavioral profile as indicated in rodent studies. Our behavioral characterization of
hippocampal subregions along the longitudinal axis, on the one hand, reproduced the

emotion-cognition gradient suggested in rodents (M. B. Moser & Moser, 1998), but also
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indicated an additional behavioral gradient, of self-centric vs. world-centric information
processing summarizing previous proposed behavioral theories of the hippocampus.

After having extracted our hippocampal maps based on different MRI measures, 1 was
interested in investigating whether they remain stable across the lifespan and in disease.
Given the lack of consistency and specificity in atrophy patterns across studies and given the
lack of age and disease dependent hippocampal maps, the second study aimed extract age and
disease-specific maps. Using structural covariance the hippocampus was separately
parcellated in the group of young, middle-aged, and elderly healthy participants, as well as in
MCI and dementia patients. Overall, stable and consistent differentiation patterns were found
for basic parcellation schemes of 3 clusters dividing the hippocampus into head, lateral and
medial subregions reminding of the cytoarchitectonic differentiation between CA and
subiculum.

The differentiation into 3 subregions optimally captured age and disease dependent changes.
In study 2, we reproduced the map of the hippocampus of young participants based on
structural covariance as reported in study 1, pointing to a robust differentiation pattern based
on macro-structural measures. Moreover, high similarity of differentiation patterns across
dataset samples (e.g. young, elderly, dementia) was found, supporting the assumption that
alterations in hippocampal organization were driven by aging and disease and not due to
dataset specific measurement noise.

Prominent age-related changes were detected in the posterior hippocampus, as the lateral
subregion decreased with higher age from the tail. In dementia, however, the lateral subregion
expanded into the medial direction covering the body of the hippocampus, resembling the
tripartite organization (i.e. head-body-tail) found with functional connectivity measures in the
first study.

Behavioral characterization of underlying subregions’ structural covariance networks revealed
that the head subregion was consistently associated with self-related automatic processing of
information (e.g. autobiographical memory, emotions, reactivity) independent of age or
disease. This was however not the case for the behavioral associations of the lateral and
medial subregions, which underwent alterations across the lifespan due to co-plasticity and
co-atrophy in aging and dementia. In the first period of life, the medial subregion (Study 2,
Fig. 4) was primarily associated with the processing of visual information (e.g. place, objects,
encoding), while in the second half of life, the medial subregion was additionally associated
with motoric coordination and navigation. Substantial behavioral alterations were found for

the lateral subregion in dementia (Study 2, Fig. 4). While being less defined in healthy
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populations, it was behaviorally associated in dementia with theory of mind, comprehension,
orthography and language, indicating its involvement in a functional network probably related
to communication.

Both studies demonstrate that the organization of the hippocampus can be studied from
different perspectives such as functional connectivity and structural covariance. Hippocampal
organization based on functional connectivity suggests mainly a differentiation along the
anterior-posterior dimension whereas organization based on structural covariance mainly
suggests a differentiation along the medial-lateral dimension resembling micro-anatomical
differentiation. Finally, it should be emphasized that hippocampal differentiation is dependent
on changes of large-scale networks over the course of lifetime and in pathology influencing

behavior.

4.1 Hippocampal organization along the medial-lateral vs. anterior-posterior dimension

Despite a rough resemblance, hippocampal organizations derived from functional
connectivity and structural covariance contrasted with the organization pattern known from
histology along the medial-lateral and ventral-dorsal dimension. Parcellations based on
functional connectivity were mainly organized along the anterior-posterior dimension
whereas parcellations based on structural covariance mainly displayed an organization along
the medial-lateral dimension.

This raises the question, which organization pattern represents better the underlying biological
composition of the hippocampus? And, could different organization patterns co-exist along
both dimensions?

In line with our results, previous studies indicated that the preliminary organizational
dimension of the hippocampus primarily depends on the feature by which the hippocampus is
differentiated. A differentiation along the anterior-posterior dimension was proposed by
studies investigating theta propagation in electrophysiological recordings in rodents (Lubenov
& Siapas, 2009), intra-hippocampal functional (Dalton et al., 2019) and anatomical
connectivity (Beaujoin et al., 2018), size of place fields (Jung et al., 1994; Kjelstrup et al.,
2008; Maurer, VanRhoads, Sutherland, Lipa, & McNaughton, 2005), and gene expressions
(Fanselow & Dong, 2010; Vogel et al., 2020). Within the subfields anatomical (in monkeys)
(R. Insausti & Munoz, 2001) and functional connectivity in humans is also organized along
the longitudinal axis (Dalton et al., 2019; Libby et al., 2012; Maass, Berron, Libby,
Ranganath, & Diizel, 2015; Vos de Wael et al., 2018). Recent work focusing on gradients in
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contrast to parcellations, also proposed a functional gradient (Przezdzik, Faber, Fernandez,
Beckmann, & Haak, 2019) and a gradient of gene expression along the longitudinal axis
(Vogel et al., 2020). Vos de Wael et al. (2018) identified two organizational gradients, one
along the anterior-posterior dimension based on functional connectivity and a second one
along the medial-lateral dimension based on microstructure supporting our own findings.
Studies that primarily found an organization along the medial-lateral dimension often
investigated microstructural features within the hippocampus not taking extra-hippocampal
connectivity into account. DeKraker, Lau, Ferko, Khan, and Ko&hler (2020), for example,
chose morphological and laminar features for hippocampal mapping and demonstrated that
thickness, gyrification, and mean neural density (previously the main feature in classical
histological mapping) reveal a differentiation pattern along the medial-lateral dimension
dividing the hippocampus into the known subfields. Gyrification, however, indicated a
differentiation pattern along the anterior-posterior dimension, when studying it within
subfields.

Thus, these studies and findings highly emphasize that there are at least two main
organizational dimensions in the hippocampus. Moreover, our parcellation work did not
suggest exclusively either a differentiation schema along the one or exclusively along the
other dimension, but rather a combination of both supporting the assumption that
differentiation patterns along both dimensions are valid and complement each other.

Very recent work by Kharabian Masouleh, Plachti, Hoffstaedter, Eickhoff, and Genon (2020)
identified even a third potential organizational dimension along the ventral-dorsal axis based
on structural covariance, which was in line with Bajada et al. (2017), who reported patterns of
connectivity along the medial-lateral and anteroventral-posterodorsal dimension in the

temporal lobe.

4.2 Behavioral characterization of hippocampus’ subregions and associated structural
covariance networks

While there is general agreement that the anterior hippocampus is related to episodic memory,
and spatial navigation is associated with posterior hippocampus (Persson, Stening, Nordin, &
Soderlund, 2018), there is so far no systematic and broad behavioral characterization bridging
the gap between hippocampus organization and behavior. However, such a systematic
overview would help to understand hippocampus’ involvement in human’s behavior and to
detect early deviations in pathological conditions. Therefore, we established a behavioral
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profiling of hippocampus’ subregions (study 1) and the underlying structural covariance
networks associated with the subregions (study 2). Both characterizations yielded similar
pattern of associated behavior despite using different inputs (e.g. subregions and networks).
Based on the findings of the first study, we suggest that a behavioral gradient along the
anterior-posterior axis is present. Anterior subregions were more likely involved in self-
centric (e.g. autobiographical memory, emotions) and posterior subregions more likely
involved in world-centric information processing (e.g. navigation, objects, scenes).

In contrast to other studies (H. Kim, 2015), we did not find a clear differentiation for general
psychological processes such as encoding, memory and recollection along the anterior-
posterior axis. Our self-vs. world-centric processing hypothesis rather suggests that not the
psychological process matters, but the quality of the information to be processed (e.g.
anterior: anger, happy; posterior: visual information, navigation). I speculate that this is
related to extra-hippocampal connectivity since posterior hippocampus is more likely
connected to occipital and parietal cortices, while the anterior hippocampus being more
connected to amygdala, anterior cingulum and orbitofrontal cortex.

In line with other studies, our behavioral profiling indicated that spatial behavior, navigation,
and retrieval were more likely associated with posterior hippocampus whereas episodic
memory and emotion were more likely associated with anterior hippocampus (H. Kim, 2015;
Kiihn & Gallinat, 2014; M. B. Moser & Moser, 1998; Nadel et al., 2013). Behavioral terms
such as vestibular, imagination, recent memories and abstraction are very specific and were
not found in our behavioral profiling, as suggested by previous literature (Bowman &
Zeithamova, 2018; Hufner et al., 2011; Zeidman & Maguire, 2016).

The most related theory to ours is probably pattern integration vs. pattern separation (Morton
et al., 2017; Zeidman & Maguire, 2016). Being able to discriminate between stimuli while
exploring environments requires the ability to separate patterns or stimuli from each other,
being able to differentiate between similar but not identical items. This is in line with our
suggested world-centric information processing idea, namely the ability to process and to
differentiate between stimuli coming from outside, which also requires to encode and to store
the information. On the other hand, establishing coherent memories requires the integration of
different patterns in one memory trace, which is described by our self-centric information
processing or by the term pattern completion or integration. However, the theory of pattern
integration vs. pattern separation was also suggested in the context of subfield organization of
the hippocampus. CA3 and dentate gyrus were associated with pattern separation whereas

CA1 was associated with pattern integration (Bakker et al., 2008; Dimsdale-Zucker et al.,
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2018; Leutgeb, Leutgeb, Moser, & Moser, 2007). Therefore, it is unclear whether pattern
integration and separation are organized along the medial-lateral or anterior-posterior axis.

In contrast to study 1, in study 2 we characterized structural covariance networks associated
with hippocampal subregions instead of characterizing subregions themselves. Our results of
study 1 and 2 were convergent for the anterior hippocampus showing that it is associated with
self-related information processing including autobiographical memory, emotions, but also
reactivity and regulation. In addition, study 2 revealed that the medial hippocampal subregion
is probably involved in visual-motoric coordination and language production or processing.
While visual processing was more dominant in younger years, motoric coordination and
execution became more evident in the second period of life. This finding suggested that the
structural covariance network of the medial subregion might co-vary with the inferior
longitudinal fasciculus (ILF) associated with motoric learning, visual recognition and lexical
language processing (Herbet et al., 2018). The ILF was recently identified as one of the six
long-range pathways of the hippocampus (Maller et al., 2019) (Fig. 5) supporting our
assumptions.

In sum, we suggest a behavioral gradient along the anterior-posterior axis of self-centric vs.
world-centric information processing established on functional connectivity. The medial
hippocampal subregion is more likely involved in visual and motoric behavior whereas the
behavioral meaning of the network associated with the lateral subregion has to be further

determined in future studies.
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Figure 5. Hippocampal associated pathways and tracts. A) blue: inferior longitudinal
fasciculus, orange: spinal-limbic pathway, yellow: cingulate bundle, green: anterior
commissure, purple: tapetum, red: fornix; Adapted from Maller et al. (2019) under the
Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/. B) Red and green fibers cross the amygdala and

hippocampus. Those fibers that cross the amygdala join the orbitofrontal area and the
temporal area through the uncinate fasciculus. The blue and yellow fibers follow the shape of
the fornix. Some fibers join the splenium of the corpus callosum and some fibers extend to the
occipital area (Colnat-Coulbois et al., 2010). Adapted with the permissions of AANS

Publication.

4.3 Aging and dementia disrupt large-scale networks beyond hippocampal atrophy

Previous studies primarily examined volume reductions in the hippocampus during aging and
dementia, but network reorganizations in the context of hippocampus were less intensively
explored. Therefore study 2, examined changes in differentiation patterns within the
hippocampus influenced by alterations of large-scale networks due to either co-plasticity or
co-atrophy during aging and dementia.

If certain voxels in the hippocampus do not co-vary with certain brain regions but with other

regions instead (if any), this would reflect changes in their connectivity profiles and would be

139



reflected in differentiation patterns within the hippocampus. Therefore, alterations in
hippocampus’ map would suggest that either ‘connections’ (meant in a statistical manner)
would be lost or ‘new connections’ would be established, representing some kind of
reorganization.

Reorganization processes were already reported in healthy aging focusing on resting-state
functional connectivity (Koch et al., 2010; Zonneveld et al., 2019) and task-related co-
activation networks (Stern et al.,, 2005), which was attributed to either functional
disconnections® (Koch et al., 2010) or white matter tract disruptions (O'Sullivan et al., 2001).
Networks related to higher order cognition such as language-related semantic network,
executive control network but also the default mode network revealed reduced structural
associations in higher age compared to younger adults (Montembeault et al., 2012). In
younger age structural covariance networks seem to be more distributed but get more
localized with advanced age (Montembeault et al., 2012; Montembeault et al., 2016). This
process speeds up in pathology, as graph theoretical analysis showed that long-range
connections decrease but local connectivity increases in MCI and dementia. The consequence
is a loss of network integrity and an acceleration of fragmentation of networks (He, Chen, &
Evans, 2008; H.-J. Kim et al., 2016; Pereira et al., 2016).

But aging is not simply accompanied by a decrease or decline of networks, as shown in the
context of medial temporal lobe and functional connectivity. A. Salami, Wahlin, Kaboodvand,
Lundquist, and Nyberg (2016) reported in a cross-sectional (Alireza Salami, Pudas, &
Nyberg, 2014) and in a longitudinal study a decrease in functional connectivity for anterior
medial temporal lobe (including the hippocampus) during aging on the one hand. But they
also reported an increase of functional connectivity for the posterior temporal lobe on the
other hand (Alireza Salami et al., 2014; A. Salami et al., 2016). We also found a decrease and
increase of structural covariance networks for different subregions of the hippocampus. While

the lateral-green cluster decreased from the tail with higher age’, the medial-blue cluster

6 Higher task-related activity in older participants seems to contradict the disruption hypothesis. Andrews-Hanna et al.
(2007) argued that disrupted and therefore segregated large-scale networks are difficult to coordinate, which results in an
inefficient processing of information. In order to compensate this inefficiency, increased functional activity is recruited to get
more resources in order to solve the task (Sala-Llonch, Bartres-Faz, & Junque, 2015). Morcom and Henson (2018), however,
suggested that the higher frontal activity is unspecific and mirrors inefficiency and not compensation.

7 The low behavioral specificity of structural covariance network of the lateral-green subregion and its almost linear decrease
from the tail with age might be related to anatomical changes rather than behavioral changes. In younger age, the network
yielded primarily associations with subcortical regions (e.g. thalamus, caudate nuclei) and decreased with higher age to
parieto-occipital regions. Anatomically it was reminiscent to some extent to the grey matter regions around the dorsal
hippocampal commissure, posterior cingulum, tapetum, and fornix (Postans et al., 2019), those white matter fibers/tracts
connect the posterior hippocampus with contralateral hippocampus, subcortical, and posterior brain regions.

The fornix is the white matter output of the hippocampus through the tail (R. S. C. Amaral et al., 2018) and connects the
hippocampus with limbic structures (i.e. hypothalamus, thalamus, nucleus accumbens) (Douet & Chang, 2015), similar to our
network of the lateral subregion. The fornix has been suggested to transfer information from short-term to long-term memory
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expanded more into the tail demonstrating an almost proportional relationship between age
and the amount of decrease/increase. The same mechanism also applied to the underlying
structural covariance networks. The associated network of the lateral-green cluster decreased
with higher age to subcortical regions but the network of the medial-blue cluster expanded
covering a major posterior part of the brain. In dementia, however, we found especially a
decrease of the structural covariance network for the anterior subregion, being more restricted
to the temporal and parietal lobes.

Nordin et al. (2018), however, yielded stable structural covariance networks for the anterior
and posterior hippocampus across age groups and found no changes for anterior and posterior
hippocampus except for an overall decrease in network integrity. To add to the
inconsistencies, other studies reported decreased functional connectivity of the posterior
hippocampus in groups of higher age (Andrews-Hanna et al., 2007; Damoiseaux, Viviano,
Yuan, & Raz, 2016).

The divergences in findings are probably related to previous studies’ selection criteria of the
regions of interest (i.e. anterior and posterior hippocampus), differences in sample sizes and
age groups. It is therefore noteworthy that we did not impose prior selection criteria on the
region of interest for anterior and posterior hippocampus (in study 1 and 2) but used a purely
data driven approach. Taken together, our results and some of the other studies indicate that
aging is a process accompanied by co-plasticity at the functional and structural level.

In contrast to aging, Alzheimer dementia is additionally characterized by a high burden and
distribution of pathogens such as amyloid plaques and tau neurofibrillary tangles (Braak &
Braak, 1991; Corder et al., 2000). Amyloid plaque distributes along the default mode network
(Buckner et al., 2005; Klunk et al., 2004; Montembeault et al., 2016) and tau neurofibrillary
tangles co-vary strongly with functional networks (Franzmeier et al., 2019) probably resulting
in a functional disconnection of the hippocampus from parietal brain regions (Pasquini et al.,
2015). Previous results strongly suggest that amyloid beta and tau pathology afflict functional

network integrity and contribute independently to the disruption of functional connectivity of

via the Papez circuit and is accordingly, involved in long-term memory, encoding and retrieval (Douet & Chang, 2015;
Eichenbaum et al., 2007; Foster et al., 2019). The tapetum and the posterior hippocampal commissure, which are associated
with learning, memory and recognition (Postans et al., 2019), transfer information between hemispheres (Maller et al., 2019).
Several studies suggested that posterior hippocampal connectivity is more likely influenced by white matter disruption either
of the fornix (Metzler-Baddeley et al., 2019) or of the cingulum (Catheline et al., 2010), which might explain the decrease of
the lateral subregion from the tail found in study 2. The fornix starts to atrophy early after its peak in adolescence (Douet &
Chang, 2015), which might explain why we see a decrease of the lateral subregion already in the group of middle aged
participants. Damage of white matter glia of the fornix seems to cause grey matter damage such as neuronal loss in the
hippocampus with higher age (Metzler-Baddeley et al., 2019). Grey matter alterations in the hippocampus are probably
determined by these white matter changes (Spreng & Turner, 2013). In sum this raises the question whether the observed
shift in hippocampal organization of the posterior part (lateral and medial subregions) reflect white matter thinning affecting
grey matter co-variation of the hippocampus in healthy aging.
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the medial temporal lobe (including the hippocampus) (L. Wang et al., 2013). But dementia
similar to aging does not exclusively demonstrate disconnection but also increased functional
connectivity as was shown between prefrontal, parietal and occipital lobes (K. Wang et al.,
2007). If this also applies to structural covariance of the hippocampus, has to be shown in
future studies. Our own results showed that the structural covariance network of the lateral-
body subregion follows functional networks associated with theory of mind, comprehension
and language suggesting a qualitative change in network co-variations.

Together this represents strong implications that dementia is not a simple accelerated aging
process but functionally afflicted by pathogens, which again reshape functional and structural
covariance networks influencing hippocampal differentiation patterns. These results highly
suggest that the hippocampus reorganizes its structural covariance networks beyond
hippocampal atrophy in healthy aging and disease. While underlying networks associated
with hippocampal subregions primarily decrease in dementia, increased covariance for the

posterior hippocampus in addition to decreases was observed in healthy aging.

4.4 Mild cognitive impairment - a state in between

Mild cognitive impairment is considered to be a pre-clinical stage of Alzheimer’s disease
especially the amnestic type of MCI seems to develop more likely Alzheimer’s symptoms
later on (Dubois et al., 2016). As MCI represents the silent preclinical stage, it is more related
to dementia, so that we would expect differentiation patterns of the hippocampus to be more
similar to dementia patients rather than to healthy elderly. In this thesis, however, late MCI
patients, who are expected to be more prone to dementia than early MCI patients, were
included in the dementia group and not in the MCI group. Therefore our group of MCI
patients was probably healthier than a typical MCI group. Accordingly, it was not surprising
that hippocampal maps of MCI patients were more similar to healthy elderly than dementia
patients.

The apolipoprotein E (APOE) genotype is a risk factor for developing Alzheimer’s disease
and influences large-scale structural covariance networks by enhancing atrophy between
thalamus, hippocampus and caudate nucleus in MCI participants (Novellino et al., 2019). As
we did not differentiate between genotypes of MCI participants future studies might
investigate whether genotype expressions have an influence on hippocampal differentiation

patterns.
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Overall MCI seems to be very similar to dementia in terms of identified atrophy in subfields
(Liana G. Apostolova et al., 2006; Susanne G. Mueller et al., 2010), and disruptions in
networks even though MCI also displayed an individual pattern of decreased activation in
fronto-parietal network and default mode network, which differed from Alzheimer’s patients
(Chand, Hajjar, & Qiu, 2018; H. J. Li et al., 2015). Our group of MCI patients was probably
more preserved challenging the scientific field to account for both, health and risk factors in

future studies.

4.5 Cytoarchitectonic hippocampus model less supported by behavior and extra-
hippocampal connectivity

Many scientists focus on the cytoarchitectonic subdivision of the hippocampus even in the
context of behavior and connectivity, although D. G. Amaral and Witter (1989) already
suggested to consider, not only the cytoarchitectonic-lamina subdivision, but also the anterior-
posterior organization of the hippocampus in rodents. Besides histological differences, the
cytoarchitectonic model was further justified by assuming that a) subfields are supported by
specific behavior and b) are characterized by specific connectivity profiles, which will be
discussed briefly.

It was suggested that the dentate gyrus and CA3 are involved in pattern separation and
completion (Bakker et al., 2008; Leutgeb et al., 2007). CA2 was associated with social
memory in rats (Alexander et al., 2016; Hitti & Siegelbaum, 2014). CA1, on the other hand,
was associated with novelty detection (Barbeau, Chauvel, Moulin, Regis, & Liégeois-
Chauvel, 2017), and autobiographical memory (Bartsch, Dohring, Rohr, Jansen, & Deuschl,
2011), but also CA3 was associated with novelty detection in rodents (Kesner, Lee, & Gilbert,
2004). The subiculum was related to emotion, reward, motivation and navigation (S. O'Mara,
2005; S. M. O'Mara, Sanchez-Vives, Brotons-Mas, & O'Hare, 2009). Even if subfields were
associated with certain behavior, there are no consistent results on the meta-analytical level to
support this assumption. The association between subfields and behavior was assessed in
individual experiments mostly in rodents but the transfer to humans is difficult. Furthermore,
fMRI studies often have not the spatial resolution to reliably distinguish between some
subfields such as CA3 and the dentate gyrus (Yassa & Stark, 2011) hampering to investigate
the relationship between subfields and human behavior. In sum, much more investigations are
needed to clarify the specific link. It is furthermore essential to determine, whether the
activity or lesion of the whole subfield was assessed or the subfield at a specific location
along the longitudinal axis (for instance in the anterior head). There are neither consistent nor
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sufficient studies available to draw a clear conclusion on how subfields are associated with
human behavior, which has to be resolved in future.

In terms of connectivity and subfields, previous work primarily focused on intra-hippocampal
connectivity of the hippocampus. Doing so, the trisynaptic® and the polysynaptic pathways’
were identified to be essential to transfer signals within the hippocampus across lamina and
subfields. On the other hand, extra-hippocampal connectivity was poorly described so far,
with connections to the anterior nuclei of the thalamus, mammillary bodies, posterior
cingulate cortex, retrosplenial cortex and anterior cingulate (Duvernoy, 2013)(p. 27ff) (Colon-
Perez et al., 2015; Ly et al.; Zeineh, Holdsworth, Skare, Atlas, & Bammer, 2012; Zeineh et
al., 2017). However, it is still rather vague how the subfields are specifically connected to the
rest of the brain, as subfield’s specific characterizations are lacking. Dalton et al. (2019)
attempted to do so, and replicated the trisynaptic pathway using functional connectivity. But
besides this, we do not know much about subfields’ whole brain connectivity profiles.

In contrast, in both studies of this work I focused on large-scale networks of the hippocampus,
which are considered to represent extra-hippocampal co-variation with the rest of the brain. It
is unclear, whether those covariance networks represent direct connections between the
hippocampus and the revealed networks, or if its relationship is mediated by functional
connectivity. Independent of the underlying mechanism, our structural covariance networks of
the subregions mirrored the revealed connectome of the hippocampus reported by Maller et
al. (2019) and by Colnat-Coulbois et al. (2010) (Fig. 5). Their work showed that the ILF, the
fornix, cingulum, tapetum, anterior commissure, spinal limbic pathway, fibers to the occipital
areas and the uncinate fasciculus (which is still debatable whether it is connecting the
hippocampus with frontal regions) are connections associated with the hippocampus to the
rest of the brain. Overall, future studies should clarify, which brain regions are specifically
connected with the subfields and lamina of the hippocampus and which connections are
related to subregions as they were revealed in this work.

So far, relatively poor support is available for the assumption that the laminar and
cytoarchitectonic organization is supported by specific behavior and is on top characterized

by specific extra-hippocampal connectivity profiles, which has to be examined in detail in

8 The trisynaptic pathway starts with the entorhinal cortex, which provides the primary input to the hippocampus. The
entorhinal cortex projects to the dentate gyrus, which projects via mossy fibers to CA3, which neurons project to CA1l via
Schaffer collaterals. CA1 projects back to the enthorinal cortex (Duvernoy, 2013) (p. 28f) (Knierim, 2015).

9 The trisynaptic pathway is part of the polysynaptic pathway, which starts with the entorhinal cortex, projects to the dentate
gyrus, and transverses to CA4 and CA3 via mossy fibers. From the entorhinal cortex the perforant pathway perforates the
subiculum projecting to the dentate gyrus. Some axons of CA3 and CA4 emit Schaffer collaterals, which in turn
communicate with the apical dendrites of CA1. Other axons access the alveus and then the fimbria, which represents the
major hippocampal output pathway through the fornix. Axons of CAl produce collaterals reaching the subiculum. Other
axons of CA1 and subiculum also project back to the entorhinal cortex (Duvernoy, 2013)(p. 27f%).
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future studies. In sum, I suggest to establish a three-dimensional perspective of the
hippocampus with both differentiation patterns along the medial-lateral and anterior-posterior
dimension, which is more supported by extra-hippocampal connectivity and heterogeneity of
behavior as revealed by both studies in this work. The two organizational patterns are not

contradictory to each other but complementary.

4.6 Parcellation: Science or art?

The title is inspired by the paper 'Clustering: Science or art?' by Luxburg, Williamson, and
Guyon (2012) and is intended to remind of the challenges of the method of clustering and
especially referring to the quote that ‘clustering is in the eye of the beholder’ (Jain, 2010).
Therefore, some of the caveats will be briefly discussed in this section.

Both studies of this thesis were established using the method of CBP, which relies on an
unsupervised clustering algorithm to divide the hippocampus into subregions/clusters to
reveal its underlying organization. So far, a considerable number of regions have been
parcellated providing a broad range of comparisons between different topographical schemas
assessed with divergent approaches. These comparisons can be used to evaluate whether the
method is reliable and valid. I define validity here in terms of biological meaningfulness,
which is not directly measurable. In both studies we assessed validity indirectly by
investigating whether parcellations show a re-occurring pattern either across modalities (study
1) or across dataset samples (study 2). Previous studies referred to validity in the context of
how well parcellations match histological mapping, which does not fit to the goals of our
investigation since different measures were used (micro-anatomical tissue composition vs.
macro-anatomical large-scale networks).

However, parcellations based on diffusion MRI on the thalamus and medial frontal cortex
reveal high correspondence with nuclei and subregions known from histology (Behrens et al.,
2003; Johansen-Berg et al., 2004) suggesting high correspondence between diffusion MRI
and histology (Simon B. Eickhoff, Yeo, & Genon, 2018). But parcellations based on MACM,
resting-state functional connectivity and structural covariance, performed on the insula, (pre)-
supplementary motor area, striatum, orbitofrontal cortex and amygdala yielded either
convergent or divergent topographical patterns challenging the interpretation of results
(Balsters, Mantini, & Wenderoth, 2018; Cauda et al., 2012; Clos et al., 2014; Cohen,
Lombardo, & Blumenfeld, 2008; S. B. Eickhoff et al., 2011; Genon et al., 2017; Genon, Reid,
Li, et al., 2018; Kahnt, Chang, Park, Heinzle, & Haynes, 2012; Kelly et al., 2012; Mishra,
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Rogers, Chen, & Gore, 2014). This can have different reasons besides from the fact that
different measures and techniques were used. The next section will address the main caveats

associated with clustering.

Clustering algorithm

Clustering is an unsupervised machine learning approach with the purpose to assign objects to
classes or clusters that are not predefined so that the whole approach is exploratory in nature
(Jain, 2010; Luxburg et al., 2012).

CBP does not provide a ground truth solution of differentiation patterns but rather what is the
optimal partition best mining and describing the data (S. B. Eickhoff et al., 2015). This
provoked the statement that ‘clustering is in the eye of the beholder’ (Jain, 2010) and
therefore highly subjective, raising the question, how to ensure scientific validity of
clusterings (e.i. biological meaningful parcellations).

The user should be aware that dependent on the algorithm, be it k-means, spectral clustering
or hierarchical clustering different assumptions about the data and the expected outcome are
made implicitly (S. B. Eickhoff et al., 2015). To be more precisely, k-means performs best on
data, which clusters are expected to be small in size and its features are spherical to the cluster
center (S. B. Eickhoff et al., 2015). Spectral clustering is capable to find more complicated
shapes in the data, which are discontinuous but at the same time it forces the clusters to be
equal in size (S. B. Eickhoff et al., 2015). Hierarchical clustering is applied on data, which is
nested, so that no specification of cluster number is required. However, hierarchical clustering
is sensitive to effects of close spatial relationships of neighboring objects (S. B. Eickhoff et
al., 2015).

Therefore, one major limitation of this work is that we did not test replicability of partitions
across clustering algorithms, which should be kept in mind for future work. In this context,
Thirion, Varoquaux, Dohmatob, and Poline (2014) suggested to prefer Ward’s algorithm to
cluster functional MRI data based on reproducibility and accuracy that was achieved. While
Arslan et al. (2018) did not prefer any algorithm, k-means performed better on functional
MRI data due to validity (e.g. measured with Silhouette values and parcel homogeneity) even
though with poor reproducibility.

It is however worth mentioning, that no algorithm was developed so far to satisfy all criteria
that are posed on a clustering algorithm such as scale invariance, richness and consistency

(Jain, 2010; Kleinberg, 2002). Scale invariance means, that a rescaling of the similarity metric
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would not change the clustering solution. In other words, to prefer the Mahalabonis to
Euclidean distance, should lead to the same cluster solution. Richness refers to the ability of
the algorithm to find any possible partition of the data in regard of size and shape of the
clusters. Consistency means that a spatial change of distances due to stretching or shrinking
would not change the clustering solution (Jain, 2010; Kleinberg, 2002).

Overall, while it is highly recommended to apply different clustering algorithms on the data,

there is likely no one clustering algorithm that will always provide a perfect solution.

Predefining k-clusters using k-means

Using k-means requires the predefinition of the number of clusters in which the data must be
parcellated but it does not guarantee to find the true biological topography. Therefore, the
decision of the right number of partitions was guided by previous work already identified 3
and 5 parcels as optimal (Robinson et al., 2015; Robinson et al., 2016). By increasing the
cluster number up to 7, we ensured to capture higher differentiation patterns as well. In the
first study, we also tested for k: 2-10 achieving similar performances compared to k: 2-7.

Future studies should however evaluate the possibility of a higher k for parcellations of the

hippocampus, especially using structural covariance as modality.

Connectivity and distance metric

Our definition of connectivity was based on Pearson’s correlation but other measures such as
Spearman rank correlation are potentially less prone to outliers and should be tested more
systematically in future work. Geerligs, Cam, and Henson (2016) showed that multivariate
distance correlations are more reliable than Pearson’s correlation but Carmon et al. (2019)
found no major differences using Spearman’s compared to Pearson’s correlation.

In addition, we here used the Euclidean distance as a distance metric but we did not test for
other distance metrics such as cosine, Mahalanobis or Manhattan distance (Ronan, Qi, &

Naegle, 2016), which might better account for outliers or noisy data.

Validity criteria

In the absence of a ground truth, the evaluation of clustering results poses another challenge.

In the current work we emphasized to replicate our parcellation results either in a different
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dataset sample like in study 2, or in a different related modality like in study 1 (functional
modalities: MACM and RSFC). If parcellation schemas were highly similar to each other, we
assumed biological meaningful clusterings since reoccurring patterns share a common basis,
which is less likely structured noise, as different samples and modalities have different
sources of noise.

In addition, in both studies we focused on robustness and consistency of parcellations
estimating the internal validity of clusterings using measures such as stability, silhouette
values (study 1 and 2), variation of information, inter/intra cluster distance, percentage of
voxels misclassified (study 1).

Overall, parcellation schemas that fulfilled our criteria of reproducibility, stability and

consistency were chosen to optimally describe hippocampal organization.

Features of the data

Another challenge for clustering algorithms is the high-dimensional nature of biological data
(Ronan et al., 2016). K-means works best in low dimensional data as it has been defined to
find the nearest neighbor (Ronan et al., 2016), which is difficult in high dimensional data
(more features than participants). When the number of potential neighbors increases, the
probability of misclassification is also increased. In the current work, we did not apply
principal component analysis in order to reduce dimensionality and to capture only those
voxels in the hippocampus with the most meaningful amount of variance that probably drives
the clustering (Ronan et al., 2016). Future studies should evaluate whether dimensionality
reduction before applying the clustering algorithm would have a benefit on parcellation
schemas of the hippocampus.

In addition to the restrictions that are imposed by the clustering algorithm itself, neuroimaging
data is noisy due to technical limitations on top of inter-individual variability challenging to
extract signal from noise (S. B. Eickhoff et al., 2015; Ronan et al., 2016). To overcome the
problem of inter-individual variability and to be able to extract a general differentiation
pattern of the hippocampus, we tried to use datasets of large numbers of participants. In
addition, we applied bootstrapping on structural covariance measures in order to resample
within the seed and the target masks to reduce the risk to obtain deviant or very unlikely
parcellations. We also applied the mode-function (to find most frequent values in array)
across participants in each MRI modality accounting for the most likely clustering solution

and reducing the probability of unusual parcellation schemes at the same time.
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To reduce noise in resting-state functional connectivity data, we tested several denoising
strategies, model-based and model-free, and applied them on the data to identify the best way
of reducing structured noise (e.g. motion, physiological artifacts). At the time I started the
study, model-based strategies such as FIX were only available for the spatial dimension but
were developed further for the temporal dimension (Matthew F. Glasser et al., 2018), which
we did not test in this work. Future studies have therefore to evaluate whether model-based
strategies applied on spatial and temporal dimensions outperform our combination of model-
based spatial FIX and model-free denoising using white matter/CSF regression.

All in all, despite some shortcomings such as not having tested another clustering algorithm, a
different connectivity measure and a different distance metric or not having used
dimensionality reduction, our validation criteria still suggested convergent and consistent
parcellation schemas in study 1 across modalities and in study 2 across dataset samples
supporting reliable and valid differentiation patterns. Moreover, we did not define
initialization centers of the clusters and therefore did not constrain our parcellation results,
being completely data driven. Instead we used a high number of repetitions ensuring to find
the optimal convergence of data points (voxels) to clusters’ centers.

To answer the question raised at the beginning, whether clustering represents art rather than
science, my answer is a clear no. Clustering and therefore parcellation is a challenging
scientific tool with a lot of constraints, which other scientific tools also have. But with
clustering it is possible to unravel underlying schemas and relationships that might have been
overlooked otherwise. The interpretation of results, however, is challenging and depends
highly on the subjective knowledge that a scientist has about the object of investigation.
Therefore, the interpretation of cluster solutions rather than clustering itself might be in the
eye of the beholder as scientists have to separate unlikely differentiation patterns from more

meaningful ones.

Conclusions

In contrast to known histological differentiation patterns based on micro-anatomical tissue
composition, hippocampal organization based on functional large-scale networks, be it task-
related (MACM) or task-unrelated connectivity (RSFC), revealed a differentiation pattern
mainly along the longitudinal axis. Hippocampal organization based on structural covariance
networks, however, revealed a differentiation pattern mainly along the medial-lateral

dimension resembling partly cytoarchitectonic differentiation. These findings emphasize that
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at least two different dimensions (e.g. anterior-posterior vs. medial-lateral) govern the
differentiation pattern of the hippocampus at different spatial-scales depending on the feature
of interest (cytoarchitecture vs. large-scale networks). Both dimensions are related to each
other, since functional patterns showed at higher differentiation levels also a medial-lateral
schema and macro-structural patterns showed an anterior head in addition to the medial-
lateral subregions. Therefore a three-dimensional integrative view on the hippocampus should
be taken.

In addition, we also observed that hippocampal organization based on structural covariance is
under constant change across healthy lifespan, in MCI and in dementia pathology. This has to
be further examined in a longitudinal research design to identify the driving mechanism.
While the highest age-related change was found in the posterior hippocampus, the highest
change in dementia was found for the lateral subregion expanding into the medial direction.
Thus, hippocampal organization in dementia follows more likely functional organization.
Divergences in hippocampal organization between healthy aging and dementia highly suggest
that different mechanisms are driving these alterations. For example, white matter thinning
could drive changes in aging, while pathogen distribution along functional networks might be
the reason for changes in dementia. Investigating large-scale networks in the context of
lifespan and pathology represents a more sensitive measure than purely atrophy, which is
probably only detectable in severe cases as inconsistencies in the literature suggest.

The behavioral profiling of the hippocampus confirmed its involvement in a broad range of
behavior including perception, emotion, motor and cognition stressing its high importance for
human life. Moreover, our studies exemplify a strong relationship between hippocampal
organization, its associated networks and behavior suggesting a self-centric vs. world-centric
information processing along the anterior-posterior dimension, and with the medial subregion
involved in vision-motor behavior.

Investigations of hippocampal organization should be further expanded on modalities such as
positron emission tomography, diffusion weighted MRI, and magnet encephalography
recordings. The combination of these modalities will help us to have an overarching
perspective on hippocampal organization, functioning and behavior. Data driven approaches,
even though challenging, could reveal additional organizational dimensions, which might help
to establish a detailed coordinate system for the hippocampus being able to detect and track

deviations in organization, connectivity and hence behavior.
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