000889999 001__ 889999
000889999 005__ 20210208142348.0
000889999 0247_ $$2doi$$a10.3390/agronomy10050702
000889999 0247_ $$2Handle$$a2128/26915
000889999 0247_ $$2altmetric$$aaltmetric:82072800
000889999 0247_ $$2WOS$$aWOS:000541750900118
000889999 037__ $$aFZJ-2021-00593
000889999 041__ $$aEnglish
000889999 082__ $$a640
000889999 1001_ $$0P:(DE-Juel1)164665$$aHe, Fang$$b0$$eCorresponding author$$ufzj
000889999 245__ $$aEffects of Root Temperature on the Plant Growth and Food Quality of Chinese Broccoli (Brassica oleracea var. alboglabra Bailey)
000889999 260__ $$aBasel$$bMDPI$$c2020
000889999 3367_ $$2DRIVER$$aarticle
000889999 3367_ $$2DataCite$$aOutput Types/Journal article
000889999 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611321708_23622
000889999 3367_ $$2BibTeX$$aARTICLE
000889999 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889999 3367_ $$00$$2EndNote$$aJournal Article
000889999 520__ $$aRoot temperature has long been considered an essential environmental factor influencing the plant’s physiology. However, little is known about the effect of root temperature on the quality of the food produced by the plant, especially that of horticultural crops. To fill this gap, two independent root cooling experiments (15 °C vs. 20 °C and 10 °C vs. 20 °C) were conducted in autumn 2017 and spring 2018 in hydroponics with Chinese broccoli (Brassica oleracea var. alboglabra Bailey) under greenhouse conditions. The aim was to investigate the effect of root temperature on plant growth (biomass, height, yield) and food quality (soluble sugars, total chlorophyll, starch, minerals, glucosinolates). A negative impact on shoot growth parameters (yield, shoot biomass) was detected by lowering the root temperature to 10 °C. Chinese broccoli showed no response to 15 °C root temperature, except for an increase in root biomass. Low root temperature was in general associated with a higher concentration of soluble sugars and total chlorophyll, but lower mineral levels in stems and leaves. Ten individual glucosinolates were identified in the stems and leaves, including six aliphatic and four indolic glucosinolates. Increased levels of neoglucobrassicin in leaves tracked root cooling more closely in both experiments. Reduction of root temperature by cooling could be a potential method to improve certain quality characters of Chinese broccoli, including sugar and glucosinolate levels, although at the expense of shoot biomass.
000889999 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000889999 588__ $$aDataset connected to CrossRef
000889999 7001_ $$0P:(DE-Juel1)129410$$aThiele, Björn$$b1$$ufzj
000889999 7001_ $$0P:(DE-Juel1)181079$$aSanthiraraja-Abresch, Sharin$$b2
000889999 7001_ $$0P:(DE-Juel1)166460$$aWatt, Michelle$$b3
000889999 7001_ $$00000-0001-9451-6769$$aKraska, Thorsten$$b4
000889999 7001_ $$0P:(DE-Juel1)129416$$aUlbrich, Andreas$$b5
000889999 7001_ $$0P:(DE-Juel1)129349$$aKuhn, Arnd J.$$b6$$ufzj
000889999 773__ $$0PERI:(DE-600)2607043-1$$a10.3390/agronomy10050702$$gVol. 10, no. 5, p. 702 -$$n5$$p702$$tAgronomy$$v10$$x2073-4395$$y2020
000889999 8564_ $$uhttps://juser.fz-juelich.de/record/889999/files/agronomy-10-00702-v2.pdf$$yOpenAccess
000889999 909CO $$ooai:juser.fz-juelich.de:889999$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164665$$aForschungszentrum Jülich$$b0$$kFZJ
000889999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129410$$aForschungszentrum Jülich$$b1$$kFZJ
000889999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129349$$aForschungszentrum Jülich$$b6$$kFZJ
000889999 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000889999 9141_ $$y2020
000889999 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000889999 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000889999 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889999 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32
000889999 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAGRONOMY-BASEL : 2018$$d2020-08-32
000889999 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-32
000889999 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-32
000889999 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000889999 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-32
000889999 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000889999 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-32
000889999 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889999 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32
000889999 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-32
000889999 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-08-32
000889999 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000889999 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000889999 920__ $$lyes
000889999 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000889999 980__ $$ajournal
000889999 980__ $$aVDB
000889999 980__ $$aUNRESTRICTED
000889999 980__ $$aI:(DE-Juel1)IBG-2-20101118
000889999 9801_ $$aFullTexts