000890001 001__ 890001
000890001 005__ 20240709082108.0
000890001 0247_ $$2doi$$a10.1016/j.apenergy.2020.115092
000890001 0247_ $$2ISSN$$a0306-2619
000890001 0247_ $$2ISSN$$a1872-9118
000890001 0247_ $$2Handle$$a2128/27178
000890001 0247_ $$2altmetric$$aaltmetric:82862999
000890001 0247_ $$2WOS$$aWOS:000540436500005
000890001 037__ $$aFZJ-2021-00595
000890001 082__ $$a620
000890001 1001_ $$0P:(DE-Juel1)171395$$aZou, Wei$$b0$$eCorresponding author
000890001 245__ $$aA least-squares support vector machine method for modeling transient voltage in polymer electrolyte fuel cells
000890001 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000890001 3367_ $$2DRIVER$$aarticle
000890001 3367_ $$2DataCite$$aOutput Types/Journal article
000890001 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1613481467_16605
000890001 3367_ $$2BibTeX$$aARTICLE
000890001 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890001 3367_ $$00$$2EndNote$$aJournal Article
000890001 520__ $$aAn investigation into the credibility and suitability of a transient voltage model that characterizes the dynamic behavior of polymer electrolyte fuel cells was carried out by means of quantitative and qualitative validations. The least squares support vector machine method was then used to construct a transient voltage model of a fuel cell in the first phase, including a validation based on experimental data obtained from a test rig. In the second phase, a thorough discussion of the effect of the fuel cell’s operating conditions and the exterior load changes on the model’s performance was implemented. For this phase, the influences of the sampling interval and ramp ratio are discussed and determined following a large number of tests under a variety of operating conditions. The results show that sampling with short time intervals is an effective way to improve the model’s performance, and a smoother change to the exterior load is more likely to be approximated by the least squares support vector machine model. Moreover, the voltage model is sensitive to the ramp value by comparison to the ramp time. Suggestions for future applications of the transient voltage models are also provided. For a given combination of load changes, the sampling interval should be managed within a range to reach the demand data that satisfies the voltage accuracy. On the other hand, for a determinate sampling interval, the dynamic change of the load should be restricted within a limit to ensure that the model error is lower than the demand value.
000890001 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000890001 588__ $$aDataset connected to CrossRef
000890001 7001_ $$0P:(DE-Juel1)5106$$aFroning, Dieter$$b1
000890001 7001_ $$0P:(DE-Juel1)186729$$aShi, Yan$$b2
000890001 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b3
000890001 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2020.115092$$gVol. 271, p. 115092 -$$p115092 -$$tApplied energy$$v271$$x0306-2619$$y2020
000890001 8564_ $$uhttps://juser.fz-juelich.de/record/890001/files/Zou_Wei_A%20least-squares%20support%20vector%20machine%20medthod%20for%20modeling%20transient%20voltage%20in%20polymer%20electrolyte%20fuel%20cells.pdf$$yPublished on 2020-05-26. Available in OpenAccess from 2022-05-26.
000890001 909CO $$ooai:juser.fz-juelich.de:890001$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171395$$aForschungszentrum Jülich$$b0$$kFZJ
000890001 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)171395$$aRWTH Aachen$$b0$$kRWTH
000890001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5106$$aForschungszentrum Jülich$$b1$$kFZJ
000890001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186729$$aForschungszentrum Jülich$$b2$$kFZJ
000890001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b3$$kFZJ
000890001 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b3$$kRWTH
000890001 9130_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000890001 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000890001 9141_ $$y2021
000890001 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-11
000890001 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-11
000890001 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-11
000890001 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-11
000890001 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000890001 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890001 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2018$$d2020-09-11
000890001 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-11
000890001 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-11
000890001 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2018$$d2020-09-11
000890001 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-11
000890001 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-11
000890001 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-11
000890001 920__ $$lyes
000890001 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000890001 9801_ $$aFullTexts
000890001 980__ $$ajournal
000890001 980__ $$aVDB
000890001 980__ $$aUNRESTRICTED
000890001 980__ $$aI:(DE-Juel1)IEK-14-20191129
000890001 981__ $$aI:(DE-Juel1)IET-4-20191129