000890002 001__ 890002 000890002 005__ 20240709082108.0 000890002 0247_ $$2doi$$a10.1016/j.ijhydene.2020.07.261 000890002 0247_ $$2ISSN$$a0360-3199 000890002 0247_ $$2ISSN$$a1879-3487 000890002 0247_ $$2Handle$$a2128/27028 000890002 0247_ $$2WOS$$aWOS:000579568300058 000890002 037__ $$aFZJ-2021-00596 000890002 082__ $$a620 000890002 1001_ $$0P:(DE-HGF)0$$aKerscher, Manuel$$b0 000890002 245__ $$aThermophysical properties of diphenylmethane and dicyclohexylmethane as a reference liquid organic hydrogen carrier system from experiments and molecular simulations 000890002 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020 000890002 3367_ $$2DRIVER$$aarticle 000890002 3367_ $$2DataCite$$aOutput Types/Journal article 000890002 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611587794_31334 000890002 3367_ $$2BibTeX$$aARTICLE 000890002 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000890002 3367_ $$00$$2EndNote$$aJournal Article 000890002 520__ $$aThis work contributes to the characterization of the liquid organic hydrogen carrier (LOHC) system diphenylmethane/dicyclohexylmethane by the experimental determination and molecular simulation of the thermophysical properties of the dehydrogenated and fully hydrogenated compounds in a process-relevant temperature range of up to 623 K. Liquid density, liquid viscosity, surface tension and liquid self-diffusion coefficient data measured by vibrating-tube densimeters, surface light scattering, rotational viscometry and NMR spectroscopy are correlated and compared with available literature data which are mostly restricted to temperatures below 473 K. Furthermore, it is demonstrated that an L-OPLS force field (FF) modified in the present study outperforms commonly used FFs from literature in predicting the thermophysical properties of both substances by equilibrium molecular dynamics simulations. 000890002 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000890002 588__ $$aDataset connected to CrossRef 000890002 7001_ $$0P:(DE-HGF)0$$aKlein, Tobias$$b1 000890002 7001_ $$0P:(DE-HGF)0$$aSchulz, Peter S.$$b2 000890002 7001_ $$0P:(DE-Juel1)171130$$aVeroutis, Emmanouil$$b3 000890002 7001_ $$0P:(DE-HGF)0$$aDürr, Stefan$$b4 000890002 7001_ $$0P:(DE-Juel1)174308$$aPreuster, Patrick$$b5 000890002 7001_ $$0P:(DE-HGF)0$$aKoller, Thomas M.$$b6 000890002 7001_ $$00000-0003-0719-6758$$aRausch, Michael H.$$b7$$eCorresponding author 000890002 7001_ $$0P:(DE-HGF)0$$aEconomou, Ioannis G.$$b8 000890002 7001_ $$0P:(DE-Juel1)162305$$aWasserscheid, Peter$$b9 000890002 7001_ $$0P:(DE-HGF)0$$aFröba, Andreas P.$$b10 000890002 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2020.07.261$$gVol. 45, no. 53, p. 28903 - 28919$$n53$$p28903 - 28919$$tInternational journal of hydrogen energy$$v45$$x0360-3199$$y2020 000890002 8564_ $$uhttps://juser.fz-juelich.de/record/890002/files/1-s2.0-S0360319920329360-mmc1.pdf$$yPublished on 2020-08-26. Available in OpenAccess from 2021-08-26. 000890002 909CO $$ooai:juser.fz-juelich.de:890002$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000890002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171130$$aForschungszentrum Jülich$$b3$$kFZJ 000890002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174308$$aForschungszentrum Jülich$$b5$$kFZJ 000890002 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162305$$aForschungszentrum Jülich$$b9$$kFZJ 000890002 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000890002 9141_ $$y2020 000890002 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32 000890002 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32 000890002 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-32 000890002 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32 000890002 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000890002 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2018$$d2020-08-32 000890002 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32 000890002 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-32 000890002 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32 000890002 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32 000890002 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32 000890002 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32 000890002 920__ $$lyes 000890002 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0 000890002 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x1 000890002 9801_ $$aFullTexts 000890002 980__ $$ajournal 000890002 980__ $$aVDB 000890002 980__ $$aUNRESTRICTED 000890002 980__ $$aI:(DE-Juel1)IEK-9-20110218 000890002 980__ $$aI:(DE-Juel1)IEK-11-20140314 000890002 981__ $$aI:(DE-Juel1)IET-1-20110218 000890002 981__ $$aI:(DE-Juel1)IET-2-20140314