001     890002
005     20240709082108.0
024 7 _ |a 10.1016/j.ijhydene.2020.07.261
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a 2128/27028
|2 Handle
024 7 _ |a WOS:000579568300058
|2 WOS
037 _ _ |a FZJ-2021-00596
082 _ _ |a 620
100 1 _ |a Kerscher, Manuel
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Thermophysical properties of diphenylmethane and dicyclohexylmethane as a reference liquid organic hydrogen carrier system from experiments and molecular simulations
260 _ _ |a New York, NY [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611587794_31334
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This work contributes to the characterization of the liquid organic hydrogen carrier (LOHC) system diphenylmethane/dicyclohexylmethane by the experimental determination and molecular simulation of the thermophysical properties of the dehydrogenated and fully hydrogenated compounds in a process-relevant temperature range of up to 623 K. Liquid density, liquid viscosity, surface tension and liquid self-diffusion coefficient data measured by vibrating-tube densimeters, surface light scattering, rotational viscometry and NMR spectroscopy are correlated and compared with available literature data which are mostly restricted to temperatures below 473 K. Furthermore, it is demonstrated that an L-OPLS force field (FF) modified in the present study outperforms commonly used FFs from literature in predicting the thermophysical properties of both substances by equilibrium molecular dynamics simulations.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Klein, Tobias
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schulz, Peter S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Veroutis, Emmanouil
|0 P:(DE-Juel1)171130
|b 3
700 1 _ |a Dürr, Stefan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Preuster, Patrick
|0 P:(DE-Juel1)174308
|b 5
700 1 _ |a Koller, Thomas M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rausch, Michael H.
|0 0000-0003-0719-6758
|b 7
|e Corresponding author
700 1 _ |a Economou, Ioannis G.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Wasserscheid, Peter
|0 P:(DE-Juel1)162305
|b 9
700 1 _ |a Fröba, Andreas P.
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1016/j.ijhydene.2020.07.261
|g Vol. 45, no. 53, p. 28903 - 28919
|0 PERI:(DE-600)1484487-4
|n 53
|p 28903 - 28919
|t International journal of hydrogen energy
|v 45
|y 2020
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/890002/files/1-s2.0-S0360319920329360-mmc1.pdf
|y Published on 2020-08-26. Available in OpenAccess from 2021-08-26.
909 C O |o oai:juser.fz-juelich.de:890002
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)174308
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)162305
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-32
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2018
|d 2020-08-32
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-32
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-32
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-32
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-1-20110218
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21