000890006 001__ 890006
000890006 005__ 20240709082108.0
000890006 0247_ $$2doi$$a10.1016/j.mtener.2020.100394
000890006 0247_ $$2Handle$$a2128/27035
000890006 0247_ $$2WOS$$aWOS:000539083500034
000890006 037__ $$aFZJ-2021-00600
000890006 082__ $$a600
000890006 1001_ $$0P:(DE-Juel1)168373$$aPanchenko, Olha$$b0
000890006 245__ $$aNon-destructive in-operando investigation of catalyst layer degradation for water electrolyzers using synchrotron radiography
000890006 260__ $$aAmsterdam [u.a.]$$bElsevier Ltd.$$c2020
000890006 3367_ $$2DRIVER$$aarticle
000890006 3367_ $$2DataCite$$aOutput Types/Journal article
000890006 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611594257_15450
000890006 3367_ $$2BibTeX$$aARTICLE
000890006 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890006 3367_ $$00$$2EndNote$$aJournal Article
000890006 520__ $$aUnveiling degradation mechanisms is a difficult task encountered when characterizing materials and components for water electrolyzers, where for stationary applications these cells are expected to run for 50.000 h or more. From a R&D perspective, this incredibly long time-dependence makes the assessment of degradation mechanisms almost impracticable. Therefore, novel and advanced methodologies need to be demonstrated, aiding scientists to more quickly identify and effectively tackle the different stressors that lead to degradation. Here we show a novel approach where in-operando synchrotron radiography was used to access real-time electrode degradation. A real catalyst-coated membrane was assembled and tested under real water splitting conditions, where iridium catalyst detachment could be observed and semi-empirically quantified. For the first-time, we have also demonstrated a way to visualize and identify where bubble formation inside the catalyst-coated membrane occurs, and how it can trigger electrode degradation. This study shall open new avenues to quickly and properly unveil degradation mechanisms, methods that could also be used for other electrochemical devices such as batteries, fuel cells and solar water splitting technologies.
000890006 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000890006 588__ $$aDataset connected to CrossRef
000890006 7001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b1$$eCorresponding author
000890006 7001_ $$0P:(DE-Juel1)162160$$aRasinski, Marcin$$b2
000890006 7001_ $$0P:(DE-HGF)0$$aArlt, Tobias$$b3
000890006 7001_ $$00000-0001-9795-5345$$aManke, Ingo$$b4
000890006 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b5
000890006 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b6
000890006 773__ $$0PERI:(DE-600)2879104-6$$a10.1016/j.mtener.2020.100394$$gVol. 16, p. 100394 -$$p100394 -$$tMaterials today$$v16$$x2468-6069$$y2020
000890006 8564_ $$uhttps://juser.fz-juelich.de/record/890006/files/Panchenko_Olha_Post%20Print.pdf$$yPublished on 2020-04-15. Available in OpenAccess from 2021-04-15.
000890006 909CO $$ooai:juser.fz-juelich.de:890006$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890006 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)168373$$aRWTH Aachen$$b0$$kRWTH
000890006 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b1$$kFZJ
000890006 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b2$$kFZJ
000890006 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b5$$kFZJ
000890006 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b6$$kFZJ
000890006 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b6$$kRWTH
000890006 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000890006 9141_ $$y2020
000890006 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-27
000890006 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-27
000890006 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-27
000890006 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000890006 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890006 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-27
000890006 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-27
000890006 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-27
000890006 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-27
000890006 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-27
000890006 920__ $$lyes
000890006 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000890006 9801_ $$aFullTexts
000890006 980__ $$ajournal
000890006 980__ $$aVDB
000890006 980__ $$aUNRESTRICTED
000890006 980__ $$aI:(DE-Juel1)IEK-14-20191129
000890006 981__ $$aI:(DE-Juel1)IET-4-20191129