001     890006
005     20240709082108.0
024 7 _ |a 10.1016/j.mtener.2020.100394
|2 doi
024 7 _ |a 2128/27035
|2 Handle
024 7 _ |a WOS:000539083500034
|2 WOS
037 _ _ |a FZJ-2021-00600
082 _ _ |a 600
100 1 _ |a Panchenko, Olha
|0 P:(DE-Juel1)168373
|b 0
245 _ _ |a Non-destructive in-operando investigation of catalyst layer degradation for water electrolyzers using synchrotron radiography
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Ltd.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611594257_15450
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Unveiling degradation mechanisms is a difficult task encountered when characterizing materials and components for water electrolyzers, where for stationary applications these cells are expected to run for 50.000 h or more. From a R&D perspective, this incredibly long time-dependence makes the assessment of degradation mechanisms almost impracticable. Therefore, novel and advanced methodologies need to be demonstrated, aiding scientists to more quickly identify and effectively tackle the different stressors that lead to degradation. Here we show a novel approach where in-operando synchrotron radiography was used to access real-time electrode degradation. A real catalyst-coated membrane was assembled and tested under real water splitting conditions, where iridium catalyst detachment could be observed and semi-empirically quantified. For the first-time, we have also demonstrated a way to visualize and identify where bubble formation inside the catalyst-coated membrane occurs, and how it can trigger electrode degradation. This study shall open new avenues to quickly and properly unveil degradation mechanisms, methods that could also be used for other electrochemical devices such as batteries, fuel cells and solar water splitting technologies.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Carmo, Marcelo
|0 P:(DE-Juel1)145276
|b 1
|e Corresponding author
700 1 _ |a Rasinski, Marcin
|0 P:(DE-Juel1)162160
|b 2
700 1 _ |a Arlt, Tobias
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Manke, Ingo
|0 0000-0001-9795-5345
|b 4
700 1 _ |a Müller, Martin
|0 P:(DE-Juel1)129892
|b 5
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 6
773 _ _ |a 10.1016/j.mtener.2020.100394
|g Vol. 16, p. 100394 -
|0 PERI:(DE-600)2879104-6
|p 100394 -
|t Materials today
|v 16
|y 2020
|x 2468-6069
856 4 _ |u https://juser.fz-juelich.de/record/890006/files/Panchenko_Olha_Post%20Print.pdf
|y Published on 2020-04-15. Available in OpenAccess from 2021-04-15.
909 C O |o oai:juser.fz-juelich.de:890006
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)168373
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145276
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129883
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)129883
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Fuel Cells
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-27
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21