000890019 001__ 890019 000890019 005__ 20210208142333.0 000890019 0247_ $$2doi$$a10.1016/j.gloplacha.2019.103090 000890019 0247_ $$2ISSN$$a0921-8181 000890019 0247_ $$2ISSN$$a1872-6364 000890019 0247_ $$2Handle$$a2128/27030 000890019 0247_ $$2WOS$$aWOS:000510315900010 000890019 037__ $$aFZJ-2021-00613 000890019 082__ $$a550 000890019 1001_ $$0P:(DE-Juel1)171623$$aMoradi, Ghazal$$b0$$eCorresponding author 000890019 245__ $$aContrasting depth distribution of colloid-associated phosphorus in the active and abandoned sections of an alluvial fan in a hyper-arid region of the Atacama Desert 000890019 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020 000890019 3367_ $$2DRIVER$$aarticle 000890019 3367_ $$2DataCite$$aOutput Types/Journal article 000890019 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611590376_6865 000890019 3367_ $$2BibTeX$$aARTICLE 000890019 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000890019 3367_ $$00$$2EndNote$$aJournal Article 000890019 520__ $$aColloids and their subset nanoparticles are key soil constituents for nutrient and Organic Carbon (OC) storage and transport, yet little is known about their specific role in overall transfer of elements under hyper-arid conditions. We analyzed the Water Dispersible Colloids (WDCs) of two adjacent soil profiles, located either on the active (named: Fan) or passive (named: Crust) sections of an alluvial fan. Colloidal particles (<500 nm) were fractionated using Asymmetric Field-Flow-Field Fractionation (AF4), which was coupled online to an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) and an Organic Carbon Detector (OCD) to detect the composition of size-fractionated colloids. Three size categories of particles were identified: nanoparticles (0.6–24 nm), fine colloids (24–210 nm), and medium colloids (210–500 nm). The two profiles differed distinctively in vertical WDC distribution and associated phosphorus (P) content. Fractograms of the Crust profile predominantly showed fine colloids, whereas the medium-sized colloids dominated those of the Fan. Furthermore, the highest colloid content in the Crust profile was found at the surface, while in the Fan, colloids accumulated at 10–20 cm depth, thus overall reflecting the different genesis and infiltration capacities of the soils. Despite very low concentration of colloidal P in these hyper-arid soils, a strong correlation between colloidal P and calcium (Ca), Silica (Si), aluminum (Al), iron (Fe), and OC content were found. This also revealed Ca-phosphates as the primary P retention from, with the association of P to phyllosilicates and Fe/Al (hydr-) oxides as the main soil colloidal fractions. Overall, our results did highlight that small local scale differences in topographic-derived distribution of water flow pathways, defined the formation of the crust-like surfaces, and ultimately the overall movement and distribution of nanoparticles and colloids in soil profiles under hyper-arid conditions. 000890019 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0 000890019 588__ $$aDataset connected to CrossRef 000890019 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b1 000890019 7001_ $$0P:(DE-HGF)0$$aTrbojevic, Luka$$b2 000890019 7001_ $$0P:(DE-Juel1)159255$$aMissong, Anna$$b3 000890019 7001_ $$0P:(DE-HGF)0$$aMörchen, Ramona$$b4 000890019 7001_ $$0P:(DE-HGF)0$$aFuentes, Barbara$$b5 000890019 7001_ $$0P:(DE-HGF)0$$aMay, Simon M.$$b6 000890019 7001_ $$0P:(DE-HGF)0$$aLehndorff, Eva$$b7 000890019 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, Erwin$$b8 000890019 773__ $$0PERI:(DE-600)2016967-X$$a10.1016/j.gloplacha.2019.103090$$gVol. 185, p. 103090 -$$p103090 -$$tGlobal and planetary change$$v185$$x0921-8181$$y2020 000890019 8564_ $$uhttps://juser.fz-juelich.de/record/890019/files/Ghazal%20Moradi%20et%20al_GPC_2020_postprint.pdf$$yPublished on 2019-11-27. Available in OpenAccess from 2021-11-27. 000890019 8564_ $$uhttps://juser.fz-juelich.de/record/890019/files/Published%20version-1.pdf$$yRestricted 000890019 8564_ $$uhttps://juser.fz-juelich.de/record/890019/files/supplementary%20information.docx$$yPublished on 2019-11-27. Available in OpenAccess from 2021-11-27. 000890019 909CO $$ooai:juser.fz-juelich.de:890019$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire 000890019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171623$$aForschungszentrum Jülich$$b0$$kFZJ 000890019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b1$$kFZJ 000890019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159255$$aForschungszentrum Jülich$$b3$$kFZJ 000890019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129484$$aForschungszentrum Jülich$$b8$$kFZJ 000890019 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0 000890019 9141_ $$y2020 000890019 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02 000890019 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-02 000890019 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-02 000890019 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-09-02 000890019 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000890019 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-02 000890019 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000890019 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02 000890019 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-02 000890019 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-02 000890019 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGLOBAL PLANET CHANGE : 2018$$d2020-09-02 000890019 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02 000890019 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02 000890019 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-02$$wger 000890019 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02 000890019 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0 000890019 980__ $$ajournal 000890019 980__ $$aVDB 000890019 980__ $$aUNRESTRICTED 000890019 980__ $$aI:(DE-Juel1)IBG-3-20101118 000890019 9801_ $$aFullTexts