001     890024
005     20210127115426.0
024 7 _ |a 2128/26999
|2 Handle
037 _ _ |a FZJ-2021-00618
041 _ _ |a English
100 1 _ |a Lauer, Patrick
|0 P:(DE-HGF)0
|b 0
111 2 _ |a Fire and Evacuation Modelling Technical Conference 2020
|g FEMTC 2020
|c virtual
|d 2020-09-09 - 2020-09-11
|w virtual
245 _ _ |a Role Of The Cost Function For Material Parameter Determination
260 _ _ |c 2020
300 _ _ |a 12
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1611568123_25505
|2 PUB:(DE-HGF)
520 _ _ |a Cost functions in optimisation processes are used as a measure to compute the distance between two data sets. Commonly, the root mean square error is used as a cost function for the estimation of material parameters based on bench-scale experiments. Due to the noise and variance in the target experimental data, this may not be the best choice. This contribution presents three other approaches, which are implemented into the PROPTI framework. Their application is demonstrated on experiments with a PMMA sample in a controlled atmosphere pyrolysis apparatus (CAPA II). Although, in the specific case investigated here, the impact of the various cost function classes is small, a benefit is expected for other samples with varying complexity.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
|0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|c PHD-NO-GRANT-20170405
|x 1
700 1 _ |a Hehnen, Tristan
|0 P:(DE-Juel1)174283
|b 1
700 1 _ |a Trettin, Corinna
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Brännström, Fabian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Arnold, Lukas
|0 P:(DE-Juel1)132044
|b 4
|e Corresponding author
856 4 _ |u https://juser.fz-juelich.de/record/890024/files/2020_d3-13-lauer-paper.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890024
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174283
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132044
913 1 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 1 _ |a FullTexts
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21