000890029 001__ 890029
000890029 005__ 20211231142444.0
000890029 0247_ $$2doi$$a10.1111/nan.12685
000890029 0247_ $$2ISSN$$a0305-1846
000890029 0247_ $$2ISSN$$a1365-2990
000890029 0247_ $$2Handle$$a2128/28413
000890029 0247_ $$2altmetric$$aaltmetric:96310884
000890029 0247_ $$2pmid$$a33338256
000890029 0247_ $$2WOS$$aWOS:000605339600001
000890029 037__ $$aFZJ-2021-00623
000890029 082__ $$a610
000890029 1001_ $$0P:(DE-HGF)0$$aGerresheim, Else F.$$b0
000890029 245__ $$aThe interaction of insoluble Amyloid‐β with soluble Amyloid‐β dimers decreases Amyloid‐β plaque numbers
000890029 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2021
000890029 3367_ $$2DRIVER$$aarticle
000890029 3367_ $$2DataCite$$aOutput Types/Journal article
000890029 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640941942_29763
000890029 3367_ $$2BibTeX$$aARTICLE
000890029 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890029 3367_ $$00$$2EndNote$$aJournal Article
000890029 520__ $$aObjectivesThe heterogeneity of Amyloid‐beta (Aβ) plaque load in patients with Alzheimer's disease (AD) has puzzled neuropathology. Since brain Aβ plaque load does not correlate with cognitive decline, neurotoxic soluble Aβ oligomers have been championed as disease‐causing agents in early AD. So far, investigating molecular interactions between soluble oligomeric Aβ and insoluble Aβ in vivo has been difficult because of the abundance of Aβ oligomer species and the kinetic equilibrium in which they coexist. Here, we investigated whether Aβ plaque heterogeneity relates to interactions of different Aβ conformers.Materials and MethodsWe took advantage of transgenic mice that generate exclusively Aβ dimers (tgDimer mice) but do not develop Aβ plaques or neuroinflammation during their lifetime, crossed them to the transgenic CRND8 mice that develop plaques after 90 days and measured Aβ plaque load using immunohistochemical and biochemical assays. Furthermore, we performed in vitro thioflavin T (ThT) aggregation assays titrating synthetic Aβ42‐S8C dimers into fibril‐forming synthetic Aβ42.ResultsWe observed a lower number of Aβ plaques in the brain of double transgenic mice compared to tgCRND8 mice alone while the average plaque size remained unaltered. Corroborating these in vivo findings, synthetic Aβ‐S8C dimers inhibited fibril formation of wild‐type Aβ also in vitro, seen by an increased half‐time in the ThT assay.ConclusionsOur study indicates that Aβ dimers directly interfere with Aβ fibril formation in vivo and in vitro. The variable interaction of Aβ dimers with insoluble Aβ seeds could thus contribute to the heterogeneity of Aβ plaque load in AD patients.
000890029 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000890029 588__ $$aDataset connected to CrossRef
000890029 7001_ $$0P:(DE-HGF)0$$aHerring, Arne$$b1
000890029 7001_ $$0P:(DE-Juel1)145165$$aGremer, Lothar$$b2
000890029 7001_ $$0P:(DE-HGF)0$$aMüller‐Schiffmann, Andreas$$b3
000890029 7001_ $$00000-0003-2558-5159$$aKeyvani, Kathy$$b4
000890029 7001_ $$00000-0003-1503-1822$$aKorth, Carsten$$b5$$eCorresponding author
000890029 773__ $$0PERI:(DE-600)2008293-9$$a10.1111/nan.12685$$gp. nan.12685$$n5$$p603-610$$tNeuropathology & applied neurobiology$$v47$$x1365-2990$$y2021
000890029 8564_ $$uhttps://juser.fz-juelich.de/record/890029/files/nan.12685.pdf$$yOpenAccess
000890029 909CO $$ooai:juser.fz-juelich.de:890029$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000890029 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145165$$aForschungszentrum Jülich$$b2$$kFZJ
000890029 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000890029 9141_ $$y2021
000890029 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-20
000890029 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-20
000890029 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-20
000890029 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-20
000890029 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-20
000890029 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000890029 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROPATH APPL NEURO : 2018$$d2020-08-20
000890029 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-20$$wger
000890029 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-20
000890029 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-20
000890029 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-20
000890029 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890029 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-20
000890029 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROPATH APPL NEURO : 2018$$d2020-08-20
000890029 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-20
000890029 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-20
000890029 920__ $$lyes
000890029 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
000890029 980__ $$ajournal
000890029 980__ $$aVDB
000890029 980__ $$aI:(DE-Juel1)IBI-7-20200312
000890029 980__ $$aUNRESTRICTED
000890029 9801_ $$aFullTexts