000890046 001__ 890046
000890046 005__ 20240709082108.0
000890046 0247_ $$2doi$$a10.1016/j.apenergy.2020.115214
000890046 0247_ $$2ISSN$$a0306-2619
000890046 0247_ $$2ISSN$$a1872-9118
000890046 0247_ $$2WOS$$aWOS:000545317600002
000890046 037__ $$aFZJ-2021-00640
000890046 082__ $$a620
000890046 1001_ $$0P:(DE-HGF)0$$aLin, Rui$$b0$$eCorresponding author
000890046 245__ $$aDetailed optimization of multiwall carbon nanotubes doped microporous layer in polymer electrolyte membrane fuel cells for enhanced performance
000890046 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000890046 3367_ $$2DRIVER$$aarticle
000890046 3367_ $$2DataCite$$aOutput Types/Journal article
000890046 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1676439301_16715
000890046 3367_ $$2BibTeX$$aARTICLE
000890046 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890046 3367_ $$00$$2EndNote$$aJournal Article
000890046 520__ $$aPolymer electrolyte membrane fuel cell is a promising renewable energy technology. In order to further enhance the output performance improvement caused by the doping of multiwall carbon nanotubes in microporous layers, in this study, detailed optimization of microporous layers containing multiwall carbon nanotubes is accomplished. The synergy effects of carbon powder types, contents and diameters of multiwall carbon nanotubes, and microporous layer loadings are considered for the first time. The optimal composition under different humidity is obtained. It is found that among the four factors, carbon powder types have the greatest impact on the performance. The fuel cells containing thick multiwall carbon nanotubes exhibit more stable performance with the change of humidity. Microporous layers with large content of multiwall carbon nanotubes (15 wt%) promise better performance. The performance of microporous layer with the carbon powder of XC-72 is the worst due to inferior mass transfer and increased ohm resistance. The fuel cell with the optimized microporous layer exhibits excellent performance, under the temperature of 80 °C and 0.8 bar back pressure, the current density at 0.6 V is up to 1900 mA/cm2, and the max power density reaches 1180 mW/cm2. The significant improvement of performance can be attributed to favorable porous structure along with enhanced mass transfer and improved conductivity.
000890046 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000890046 588__ $$aDataset connected to CrossRef
000890046 7001_ $$0P:(DE-HGF)0$$aTang, Shenghao$$b1
000890046 7001_ $$0P:(DE-HGF)0$$aDiao, Xiaoyu$$b2
000890046 7001_ $$0P:(DE-HGF)0$$aZhong, Di$$b3
000890046 7001_ $$0P:(DE-HGF)0$$aChen, Liang$$b4
000890046 7001_ $$0P:(DE-Juel1)5106$$aFroning, Dieter$$b5
000890046 7001_ $$0P:(DE-HGF)0$$aHao, Zhixian$$b6
000890046 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2020.115214$$gVol. 274, p. 115214 -$$p115214 -$$tApplied energy$$v274$$x0306-2619$$y2020
000890046 909CO $$ooai:juser.fz-juelich.de:890046$$pVDB
000890046 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5106$$aForschungszentrum Jülich$$b5$$kFZJ
000890046 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000890046 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-11
000890046 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-11
000890046 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-11
000890046 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-11
000890046 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-11
000890046 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2018$$d2020-09-11
000890046 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-11
000890046 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-11
000890046 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-11
000890046 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-11
000890046 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2018$$d2020-09-11
000890046 920__ $$lyes
000890046 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000890046 980__ $$ajournal
000890046 980__ $$aVDB
000890046 980__ $$aI:(DE-Juel1)IEK-14-20191129
000890046 980__ $$aUNRESTRICTED
000890046 981__ $$aI:(DE-Juel1)IET-4-20191129