001     890066
005     20240712084522.0
024 7 _ |a 10.1109/JPHOTOV.2020.3048240
|2 doi
024 7 _ |a 2156-3381
|2 ISSN
024 7 _ |a 2156-3403
|2 ISSN
024 7 _ |a 2128/33709
|2 Handle
024 7 _ |a WOS:000621413300008
|2 WOS
037 _ _ |a FZJ-2021-00656
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Qiu, Kaifu
|0 P:(DE-Juel1)178049
|b 0
245 _ _ |a The Impact of Reflectance Variation in Silicon Heterojunction Solar Cells and Modules on the Perception of Color Differences
260 _ _ |a New York, NY
|c 2021
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674120415_13081
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The color produced by visible light that reflects from the photovoltaic modules can influence visual aesthetics for colored photovoltaic applications, such as the building integrated photo-voltaic and the vehicles integrated photovoltaic. How two colors lying close together can be perceived by the human eye is important for aesthetic design. In this article, we investigate the reflectance spectra variation caused by the variation of indium tin oxide thickness and incidence angle of sunlight based on the well-known silicon heterojunction solar cells and modules. By converting the reflectance spectra into the Delta E 2000 value, we quantify whether differences in color can be perceived. The colors are also predicted based on the standard red, green, and blue color space. The results show that the reflectance variation because of an ITO thickness deviation of 5 nm in SHJ solar cells leads to a perceptible color difference, which can be suppressed after encapsulation but is still perceptible on close observation. The ITO thickness deviation should be controlled within 3 nm to produce a nearly imperceptible visual appearance. The color difference of SHJ modules with an ITO thickness of 70 nm is nearly imperceptible if the incidence angle is below 70°. For comparison, the color differences of the passivated emitter and rear contact solar cells using SiNx as an antireflection layer is also investigated
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
536 _ _ |a 1214 - Modules, stability, performance and specific applications (POF4-121)
|0 G:(DE-HGF)POF4-1214
|c POF4-121
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bittkau, Karsten
|0 P:(DE-Juel1)130219
|b 1
|e Corresponding author
700 1 _ |a Lambertz, Andreas
|0 P:(DE-Juel1)130263
|b 2
700 1 _ |a Duan, Weiyuan
|0 P:(DE-Juel1)169946
|b 3
700 1 _ |a Liang, Zongcun
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Shen, Hui
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 6
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 7
773 _ _ |a 10.1109/JPHOTOV.2020.3048240
|g p. 1 - 6
|0 PERI:(DE-600)2585714-9
|n 2
|p 306 - 311
|t IEEE journal of photovoltaics
|v 11
|y 2021
|x 2156-3403
856 4 _ |u https://juser.fz-juelich.de/record/890066/files/Kaifu_1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890066
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178049
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130219
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130263
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)169946
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)143905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130233
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1214
|x 1
913 0 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE J PHOTOVOLT : 2018
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21