001     890076
005     20210208142343.0
024 7 _ |a 10.1021/acsami.0c13020
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a 2128/26966
|2 Handle
024 7 _ |a altmetric:92499516
|2 altmetric
024 7 _ |a 33052645
|2 pmid
024 7 _ |a WOS:000586868400054
|2 WOS
037 _ _ |a FZJ-2021-00666
082 _ _ |a 600
100 1 _ |a Milano, Gianluca
|0 0000-0002-1983-6516
|b 0
|e Corresponding author
245 _ _ |a Water-Mediated Ionic Migration in Memristive Nanowires with a Tunable Resistive Switching Mechanism
260 _ _ |a Washington, DC
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611415398_30479
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Memristive devices based on electrochemical resistive switching effects have been proposed as promising candidates for in-memory computing and for the realization of artificial neural networks. Despite great efforts toward understanding the nanoionic processes underlying resistive switching phenomena, comprehension of the effect of competing redox processes on device functionalities from the materials perspective still represents a challenge. In this work, we experimentally and theoretically investigate the concurring reactions of silver and moisture and their impact on the electronic properties of a single-crystalline ZnO nanowire (NW). A decrease in electronic conductivity due to surface adsorption of moisture is observed, whereas, at the same time, water molecules reduce the energy barrier for Ag+ ion migration on the NW surface, facilitating the conductive filament formation. By controlling the relative humidity, the ratio of intrinsic electronic conductivity and surface ionic conductivity can be tuned to modulate the device performance. The results achieved on a single-crystalline memristive model system shed new light on the dual nature of the mechanism of how moisture affects resistive switching behavior in memristive devices.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Raffone, Federico
|0 0000-0001-5045-7533
|b 1
700 1 _ |a Luebben, Michael
|0 P:(DE-Juel1)162283
|b 2
700 1 _ |a Boarino, Luca
|0 0000-0002-1221-2591
|b 3
700 1 _ |a Cicero, Giancarlo
|0 0000-0002-2920-9882
|b 4
700 1 _ |a Valov, Ilia
|0 P:(DE-Juel1)131014
|b 5
700 1 _ |a Ricciardi, Carlo
|0 0000-0002-4703-7949
|b 6
773 _ _ |a 10.1021/acsami.0c13020
|g Vol. 12, no. 43, p. 48773 - 48780
|0 PERI:(DE-600)2467494-1
|n 43
|p 48773 - 48780
|t ACS applied materials & interfaces
|v 12
|y 2020
|x 1944-8252
856 4 _ |u https://juser.fz-juelich.de/record/890076/files/acsami.0c13020.pdf
856 4 _ |y Published on 2020-10-14. Available in OpenAccess from 2021-10-14.
|u https://juser.fz-juelich.de/record/890076/files/ACS%20AppL%20Mater%20Interfaces%202020.pdf
909 C O |o oai:juser.fz-juelich.de:890076
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131014
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Controlling Electron Charge-Based Phenomena
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2018
|d 2020-09-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2018
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-02
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21