000890080 001__ 890080
000890080 005__ 20210208142340.0
000890080 0247_ $$2doi$$a10.1038/s41565-020-0702-9
000890080 0247_ $$2ISSN$$a1748-3387
000890080 0247_ $$2ISSN$$a1748-3395
000890080 0247_ $$2Handle$$a2128/26963
000890080 0247_ $$2altmetric$$aaltmetric:83634570
000890080 0247_ $$2pmid$$a32514009
000890080 0247_ $$2WOS$$aWOS:000538963500002
000890080 037__ $$aFZJ-2021-00670
000890080 082__ $$a600
000890080 1001_ $$0P:(DE-Juel1)131014$$aValov, Ilia$$b0$$eCorresponding author
000890080 245__ $$aMemristors with alloyed electrodes
000890080 260__ $$aLondon [u.a.]$$bNature Publishing Group$$c2020
000890080 3367_ $$2DRIVER$$aarticle
000890080 3367_ $$2DataCite$$aOutput Types/Journal article
000890080 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611414736_28209
000890080 3367_ $$2BibTeX$$aARTICLE
000890080 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890080 3367_ $$00$$2EndNote$$aJournal Article
000890080 520__ $$aNanoionic memrisitve devices are one of the most promising building blocks for next generation hardware architectures for cognitive type data processing. These highly scalable, low power, fast operating units offer a broad spectrum of functionalities at various operation conditions. This makes them ideal for direct applications such as sensors, selectors, short and long-term memories and more complex systems such as internet of things (IoT) and artificial intelligence (AI). Significant progress has been achieved implementing memristive devices in circuits for neuromorphic computing, demonstrating capabilities of pattern classifcation1, signal/image processing2, context-dependent network formation3, recognition of spatiotemporal patterns4 and so on. However, despite this highly encouraging progress the full potential of the memristive technologies is yet to be reached. The main advantage of the nanoionic memrisitve devices compared to classical semiconductor technologies is their operation principle, relying on redox reactions and transport of ions/atoms instead of electrons. This fact has been mostly underestimated during the race for fast integration and product developments, and fewer efforts have been dedicated to material design through a thorough understanding of the underlying physical processes.
000890080 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000890080 588__ $$aDataset connected to CrossRef
000890080 7001_ $$00000-0003-4674-4059$$aYang, Yuchao$$b1
000890080 773__ $$0PERI:(DE-600)2254964-X$$a10.1038/s41565-020-0702-9$$gVol. 15, no. 7, p. 510 - 511$$n7$$p510 - 511$$tNature nanotechnology$$v15$$x1748-3395$$y2020
000890080 8564_ $$uhttps://juser.fz-juelich.de/record/890080/files/s41565-020-0702-9.pdf
000890080 8564_ $$uhttps://juser.fz-juelich.de/record/890080/files/Valov-Nat%20Nanotechnology%202020.pdf$$yPublished on 2020-06-08. Available in OpenAccess from 2020-12-08.
000890080 909CO $$ooai:juser.fz-juelich.de:890080$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890080 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich$$b0$$kFZJ
000890080 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000890080 9141_ $$y2020
000890080 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000890080 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000890080 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000890080 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-02
000890080 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890080 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT NANOTECHNOL : 2018$$d2020-09-02
000890080 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bNAT NANOTECHNOL : 2018$$d2020-09-02
000890080 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000890080 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000890080 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-02
000890080 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-02
000890080 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-02
000890080 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-02$$wger
000890080 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000890080 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000890080 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000890080 980__ $$ajournal
000890080 980__ $$aVDB
000890080 980__ $$aUNRESTRICTED
000890080 980__ $$aI:(DE-Juel1)PGI-7-20110106
000890080 980__ $$aI:(DE-82)080009_20140620
000890080 9801_ $$aFullTexts