001     890080
005     20210208142340.0
024 7 _ |a 10.1038/s41565-020-0702-9
|2 doi
024 7 _ |a 1748-3387
|2 ISSN
024 7 _ |a 1748-3395
|2 ISSN
024 7 _ |a 2128/26963
|2 Handle
024 7 _ |a altmetric:83634570
|2 altmetric
024 7 _ |a 32514009
|2 pmid
024 7 _ |a WOS:000538963500002
|2 WOS
037 _ _ |a FZJ-2021-00670
082 _ _ |a 600
100 1 _ |a Valov, Ilia
|0 P:(DE-Juel1)131014
|b 0
|e Corresponding author
245 _ _ |a Memristors with alloyed electrodes
260 _ _ |a London [u.a.]
|c 2020
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611414736_28209
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Nanoionic memrisitve devices are one of the most promising building blocks for next generation hardware architectures for cognitive type data processing. These highly scalable, low power, fast operating units offer a broad spectrum of functionalities at various operation conditions. This makes them ideal for direct applications such as sensors, selectors, short and long-term memories and more complex systems such as internet of things (IoT) and artificial intelligence (AI). Significant progress has been achieved implementing memristive devices in circuits for neuromorphic computing, demonstrating capabilities of pattern classifcation1, signal/image processing2, context-dependent network formation3, recognition of spatiotemporal patterns4 and so on. However, despite this highly encouraging progress the full potential of the memristive technologies is yet to be reached. The main advantage of the nanoionic memrisitve devices compared to classical semiconductor technologies is their operation principle, relying on redox reactions and transport of ions/atoms instead of electrons. This fact has been mostly underestimated during the race for fast integration and product developments, and fewer efforts have been dedicated to material design through a thorough understanding of the underlying physical processes.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yang, Yuchao
|0 0000-0003-4674-4059
|b 1
773 _ _ |a 10.1038/s41565-020-0702-9
|g Vol. 15, no. 7, p. 510 - 511
|0 PERI:(DE-600)2254964-X
|n 7
|p 510 - 511
|t Nature nanotechnology
|v 15
|y 2020
|x 1748-3395
856 4 _ |u https://juser.fz-juelich.de/record/890080/files/s41565-020-0702-9.pdf
856 4 _ |y Published on 2020-06-08. Available in OpenAccess from 2020-12-08.
|u https://juser.fz-juelich.de/record/890080/files/Valov-Nat%20Nanotechnology%202020.pdf
909 C O |o oai:juser.fz-juelich.de:890080
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131014
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Controlling Electron Charge-Based Phenomena
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT NANOTECHNOL : 2018
|d 2020-09-02
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT NANOTECHNOL : 2018
|d 2020-09-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-02
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21