001     890081
005     20240712113015.0
024 7 _ |a 10.1038/s41560-020-00684-7
|2 doi
024 7 _ |a 2128/27279
|2 Handle
024 7 _ |a altmetric:89250294
|2 altmetric
024 7 _ |a WOS:000564493100001
|2 WOS
037 _ _ |a FZJ-2021-00671
082 _ _ |a 330
100 1 _ |a Classen, Andrej
|0 P:(DE-Juel1)180634
|b 0
245 _ _ |a The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets
260 _ _ |a London
|c 2020
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1614694917_21227
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Organic solar cells utilize an energy-level offset to generate free charge carriers. Although a very small energy-level offset increases the open-circuit voltage, it remains unclear how exactly charge generation is affected. Here we investigate organic solar cell blends with highest occupied molecular orbital energy-level offsets (∆EHOMO) between the donor and acceptor that range from 0 to 300 meV. We demonstrate that exciton quenching at a negligible ∆EHOMO takes place on timescales that approach the exciton lifetime of the pristine materials, which drastically limits the external quantum efficiency. We quantitatively describe this finding via the Boltzmann stationary-state equilibrium between charge-transfer states and excitons and further reveal a long exciton lifetime to be decisive in maintaining an efficient charge generation at a negligible ∆EHOMO. Moreover, the Boltzmann equilibrium quantitatively describes the major reduction in non-radiative voltage losses at a very small ∆EHOMO. Ultimately, highly luminescent near-infrared emitters with very long exciton lifetimes are suggested to enable highly efficient organic solar cells.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Chochos, Christos L.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lüer, Larry
|0 0000-0001-9952-4207
|b 2
700 1 _ |a Gregoriou, Vasilis G.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wortmann, Jonas
|0 0000-0002-3584-7442
|b 4
700 1 _ |a Osvet, Andres
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Forberich, Karen
|0 P:(DE-Juel1)178784
|b 6
700 1 _ |a McCulloch, Iain
|0 0000-0002-6340-7217
|b 7
700 1 _ |a Heumüller, Thomas
|0 P:(DE-Juel1)180635
|b 8
700 1 _ |a Brabec, Christoph J.
|0 P:(DE-Juel1)176427
|b 9
|e Corresponding author
773 _ _ |a 10.1038/s41560-020-00684-7
|g Vol. 5, no. 9, p. 711 - 719
|0 PERI:(DE-600)2847369-3
|n 9
|p 711 - 719
|t Nature energy
|v 5
|y 2020
|x 2058-7546
856 4 _ |u https://juser.fz-juelich.de/record/890081/files/s41560-020-00684-7.pdf
|y Restricted
856 4 _ |y Published on 2020-08-31. Available in OpenAccess from 2021-02-28.
|u https://juser.fz-juelich.de/record/890081/files/WF3_derivatives_SI_revised_C_final.pdf
856 4 _ |y Published on 2020-08-31. Available in OpenAccess from 2021-02-28.
|u https://juser.fz-juelich.de/record/890081/files/WF3_derivatives_revised_C_final.pdf
909 C O |o oai:juser.fz-juelich.de:890081
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)178784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)180635
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)176427
913 0 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-11-17
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT ENERGY : 2018
|d 2020-11-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-11-17
915 _ _ |a IF >= 50
|0 StatID:(DE-HGF)9950
|2 StatID
|b NAT ENERGY : 2018
|d 2020-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-11-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21