000890084 001__ 890084
000890084 005__ 20240712113015.0
000890084 0247_ $$2doi$$a10.1002/pip.3336
000890084 0247_ $$2ISSN$$a1062-7995
000890084 0247_ $$2ISSN$$a1099-159X
000890084 0247_ $$2Handle$$a2128/27266
000890084 0247_ $$2altmetric$$aaltmetric:90468085
000890084 0247_ $$2WOS$$aWOS:000569227600001
000890084 037__ $$aFZJ-2021-00674
000890084 082__ $$a690
000890084 1001_ $$00000-0003-3500-2180$$aDistler, Andreas$$b0$$eCorresponding author
000890084 245__ $$aOrganic photovoltaic modules with new world record efficiencies
000890084 260__ $$aChichester$$bWiley$$c2021
000890084 3367_ $$2DRIVER$$aarticle
000890084 3367_ $$2DataCite$$aOutput Types/Journal article
000890084 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1614603496_8401
000890084 3367_ $$2BibTeX$$aARTICLE
000890084 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890084 3367_ $$00$$2EndNote$$aJournal Article
000890084 520__ $$aDuring the last years, the development of new active materials has led to constant improvement in the power conversion efficiency (PCE) of solution‐processed organic photovoltaics (OPV) to nowadays record values above 17% on small lab cells. In this work, we show the developments and results of a successful upscaling of such highly efficient OPV systems to the module level on large areas, which yielded two new certified world record efficiencies, namely, 12.6% on a module area of 26 cm2 and 11.7% on a module area of 204 cm2. The decisive developments leading to this achievement include the optimization of the module layout as well as the high‐resolution short‐pulse (nanosecond) laser structuring processes involved in the manufacturing of such modules. By minimizing the inactive areas within the total module area that are used for interconnecting the individual solar cells of the module in series, geometric fill factors of over 95% have been achieved. A production yield of 100% working modules during the manufacturing of these modules and an extremely narrow distribution of the final PCE values underline the excellent process control and reproducibility of the results. The new developments and their implementation into the production process of the record OPV modules are described in detail, along with the challenges that arose during this development. Finally, dark lock‐in thermography (DLIT), electroluminescence (EL), and photoluminescence (PL) measurements of the record module are presented.
000890084 536__ $$0G:(DE-HGF)POF4-121$$a121 - Photovoltaik und Windenergie (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000890084 588__ $$aDataset connected to CrossRef
000890084 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph J.$$b1
000890084 7001_ $$00000-0002-8263-8125$$aEgelhaaf, Hans‐Joachim$$b2
000890084 773__ $$0PERI:(DE-600)2023295-0$$a10.1002/pip.3336$$gVol. 29, no. 1, p. 24 - 31$$n1$$p24 - 31$$tProgress in photovoltaics$$v29$$x1099-159X$$y2021
000890084 8564_ $$uhttps://juser.fz-juelich.de/record/890084/files/pip.3336-1.pdf$$yRestricted
000890084 8564_ $$uhttps://juser.fz-juelich.de/record/890084/files/Revised%20Manuscript.pdf$$yPublished on 2020-09-15. Available in OpenAccess from 2021-09-15.
000890084 909CO $$ooai:juser.fz-juelich.de:890084$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890084 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b1$$kFZJ
000890084 9130_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000890084 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000890084 9141_ $$y2021
000890084 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000890084 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000890084 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-04
000890084 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890084 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROG PHOTOVOLTAICS : 2018$$d2020-09-04
000890084 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPROG PHOTOVOLTAICS : 2018$$d2020-09-04
000890084 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-04$$wger
000890084 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000890084 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000890084 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-04
000890084 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000890084 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000890084 920__ $$lyes
000890084 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000890084 9801_ $$aFullTexts
000890084 980__ $$ajournal
000890084 980__ $$aVDB
000890084 980__ $$aUNRESTRICTED
000890084 980__ $$aI:(DE-Juel1)IEK-11-20140314
000890084 981__ $$aI:(DE-Juel1)IET-2-20140314