000890096 001__ 890096
000890096 005__ 20230815122840.0
000890096 0247_ $$2doi$$a10.1029/2020WR027110
000890096 0247_ $$2ISSN$$a0043-1397
000890096 0247_ $$2ISSN$$a0148-0227
000890096 0247_ $$2ISSN$$a1944-7973
000890096 0247_ $$2ISSN$$a2156-2202
000890096 0247_ $$2altmetric$$aaltmetric:93417004
000890096 0247_ $$2WOS$$aWOS:000582701700068
000890096 037__ $$aFZJ-2021-00685
000890096 082__ $$a550
000890096 1001_ $$00000-0002-0207-9061$$aXu, Teng$$b0$$eCorresponding author
000890096 245__ $$aPreconditioned Crank‐Nicolson Markov Chain Monte Carlo Coupled With Parallel Tempering: An Efficient Method for Bayesian Inversion of Multi‐Gaussian Log‐Hydraulic Conductivity Fields
000890096 260__ $$a[New York]$$bWiley$$c2020
000890096 3367_ $$2DRIVER$$aarticle
000890096 3367_ $$2DataCite$$aOutput Types/Journal article
000890096 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611653210_21744
000890096 3367_ $$2BibTeX$$aARTICLE
000890096 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890096 3367_ $$00$$2EndNote$$aJournal Article
000890096 500__ $$aKein Post-print verfügbar
000890096 520__ $$aGeostatistical inversion with quantified uncertainty for nonlinear problems requires techniques for providing conditional realizations of the random field of interest. Many first‐order second‐moment methods are being developed in this field, yet almost impossible to critically test them against high‐accuracy reference solutions in high‐dimensional and nonlinear problems. Our goal is to provide a high‐accuracy reference solution algorithm. Preconditioned Crank‐Nicolson Markov chain Monte Carlo (pCN‐MCMC) has been proven to be more efficient in the inversion of multi‐Gaussian random fields than traditional MCMC methods; however, it still has to take a long chain to converge to the stationary target distribution. Parallel tempering aims to sample by communicating between multiple parallel Markov chains at different temperatures. In this paper, we develop a new algorithm called pCN‐PT. It combines the parallel tempering technique with pCN‐MCMC to make the sampling more efficient, and hence converge to a stationary distribution faster. To demonstrate the high‐accuracy reference character, we test the accuracy and efficiency of pCN‐PT for estimating a multi‐Gaussian log‐hydraulic conductivity field with a relative high variance in three different problems: (1) in a high‐dimensional, linear problem; (2) in a high‐dimensional, nonlinear problem and with only few measurements; and (3) in a high‐dimensional, nonlinear problem with sufficient measurements. This allows testing against (1) analytical solutions (kriging), (2) rejection sampling, and (3) pCN‐MCMC in multiple, independent runs, respectively. The results demonstrate that pCN‐PT is an asymptotically exact conditional sampler and is more efficient than pCN‐MCMC in geostatistical inversion problems.
000890096 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000890096 536__ $$0G:(GEPRIS)359880532$$aDFG project 359880532 - Computergestützter Ansatz zur Kalibrierung und Validierung mathematischer Modelle für Strömungen im Untergrund - COMPU-FLOW $$c359880532$$x1
000890096 588__ $$aDataset connected to CrossRef
000890096 7001_ $$00000-0001-7331-8237$$aReuschen, Sebastian$$b1
000890096 7001_ $$00000-0003-2583-8865$$aNowak, Wolfgang$$b2
000890096 7001_ $$0P:(DE-Juel1)138662$$aHendricks Franssen, Harrie‐Jan$$b3
000890096 773__ $$0PERI:(DE-600)2029553-4$$a10.1029/2020WR027110$$gVol. 56, no. 8$$n8$$p1-19$$tWater resources research$$v56$$x1944-7973$$y2020
000890096 8564_ $$uhttps://juser.fz-juelich.de/record/890096/files/2020WR027110.pdf
000890096 909CO $$ooai:juser.fz-juelich.de:890096$$pVDB:Earth_Environment$$pVDB
000890096 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b3$$kFZJ
000890096 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000890096 9141_ $$y2020
000890096 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-03$$wger
000890096 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000890096 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000890096 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWATER RESOUR RES : 2018$$d2020-09-03
000890096 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000890096 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000890096 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-03
000890096 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-09-03
000890096 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000890096 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000890096 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-03
000890096 920__ $$lyes
000890096 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000890096 980__ $$ajournal
000890096 980__ $$aVDB
000890096 980__ $$aI:(DE-Juel1)IBG-3-20101118
000890096 980__ $$aUNRESTRICTED