001     890096
005     20230815122840.0
024 7 _ |a 10.1029/2020WR027110
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a altmetric:93417004
|2 altmetric
024 7 _ |a WOS:000582701700068
|2 WOS
037 _ _ |a FZJ-2021-00685
082 _ _ |a 550
100 1 _ |a Xu, Teng
|0 0000-0002-0207-9061
|b 0
|e Corresponding author
245 _ _ |a Preconditioned Crank‐Nicolson Markov Chain Monte Carlo Coupled With Parallel Tempering: An Efficient Method for Bayesian Inversion of Multi‐Gaussian Log‐Hydraulic Conductivity Fields
260 _ _ |a [New York]
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611653210_21744
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Kein Post-print verfügbar
520 _ _ |a Geostatistical inversion with quantified uncertainty for nonlinear problems requires techniques for providing conditional realizations of the random field of interest. Many first‐order second‐moment methods are being developed in this field, yet almost impossible to critically test them against high‐accuracy reference solutions in high‐dimensional and nonlinear problems. Our goal is to provide a high‐accuracy reference solution algorithm. Preconditioned Crank‐Nicolson Markov chain Monte Carlo (pCN‐MCMC) has been proven to be more efficient in the inversion of multi‐Gaussian random fields than traditional MCMC methods; however, it still has to take a long chain to converge to the stationary target distribution. Parallel tempering aims to sample by communicating between multiple parallel Markov chains at different temperatures. In this paper, we develop a new algorithm called pCN‐PT. It combines the parallel tempering technique with pCN‐MCMC to make the sampling more efficient, and hence converge to a stationary distribution faster. To demonstrate the high‐accuracy reference character, we test the accuracy and efficiency of pCN‐PT for estimating a multi‐Gaussian log‐hydraulic conductivity field with a relative high variance in three different problems: (1) in a high‐dimensional, linear problem; (2) in a high‐dimensional, nonlinear problem and with only few measurements; and (3) in a high‐dimensional, nonlinear problem with sufficient measurements. This allows testing against (1) analytical solutions (kriging), (2) rejection sampling, and (3) pCN‐MCMC in multiple, independent runs, respectively. The results demonstrate that pCN‐PT is an asymptotically exact conditional sampler and is more efficient than pCN‐MCMC in geostatistical inversion problems.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|x 0
|f POF III
536 _ _ |a DFG project 359880532 - Computergestützter Ansatz zur Kalibrierung und Validierung mathematischer Modelle für Strömungen im Untergrund - COMPU-FLOW
|0 G:(GEPRIS)359880532
|c 359880532
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Reuschen, Sebastian
|0 0000-0001-7331-8237
|b 1
700 1 _ |a Nowak, Wolfgang
|0 0000-0003-2583-8865
|b 2
700 1 _ |a Hendricks Franssen, Harrie‐Jan
|0 P:(DE-Juel1)138662
|b 3
773 _ _ |a 10.1029/2020WR027110
|g Vol. 56, no. 8
|0 PERI:(DE-600)2029553-4
|n 8
|p 1-19
|t Water resources research
|v 56
|y 2020
|x 1944-7973
856 4 _ |u https://juser.fz-juelich.de/record/890096/files/2020WR027110.pdf
909 C O |o oai:juser.fz-juelich.de:890096
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138662
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Terrestrial Systems: From Observation to Prediction
|x 0
914 1 _ |y 2020
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-09-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2018
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-09-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21